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2Lesson 1: Mathematical Background

Welcome to Part I: “Mathematical Background”

This part includes four subsections:

• Generation vs. Discrimination in Machine 
Learning

• Data Distribution, Sampling, Inference and 
Generation

• Expectation and Likelihood
• Evaluation for Generative Models, Distribution 

Distances, Divergence and Entropy



2Distribution Distances

• Why do we need to compare distributions?

• In generative modeling, it is important to compare different probability 
distributions to determine how well our model is performing. 

• For instance, we need to be able to evaluate the similarity between the true 
data distribution and the distribution learned by our generative model.

• “Divergence”

• is a way to measure the distance between two probability distributions. 

• measures quantify how much one distribution differs from another in terms 
of their shapes, locations, or other characteristics. 

How quantitatively similar are 

the blue and orange distributions?



2Divergence (first)

• Not all distance measures between two distributions are “divergence” 
measures, but we will start with them first.

• Some of which, we may benefit from in this course, are:

• Kullback-Leibler (KL) divergence

• Jensen-Shannon (JS) divergence

• Total Variation (TV) distance

• Hellinger distance



2Kullback-Leibler (KL) Divergence

• The KL divergence is a measure of the difference between two 
probability distributions, P and Q. 

• It is defined as the expected value of the logarithmic difference 
between P and Q, where the expectation is taken with respect to P. 
The KL divergence is denoted as D(P||Q).



2Kullback-Leibler (KL) Divergence

• The KL divergence is always non-negative, and it is zero if and only if 
the two distributions P and Q are identical. 

• The KL divergence is not symmetric, meaning that D(P||Q) is not 
necessarily equal to D(Q||P).

DKL(P||Q) ≠ DKL(P||Q)

• The KL divergence can be interpreted as the amount of information 
lost when using Q to approximate P (or vice versa). It measures the 
additional number of bits of information needed to specify P instead 
of Q.



2Kullback-Leibler (KL) Divergence

• The KL divergence is commonly used in generative modeling to 
measure the similarity between the true data distribution and the 
distribution learned by a generative model. 

• It is often used as a loss function to train generative models, such as 
Variational Autoencoders (VAEs), which aim to learn a lower-
dimensional representation of the data that can be used to generate 
new samples.

• Did KL remind you of something?

• Cross-entropy maybe?



2KL vs CE

• Cross-entropy is a measure of the dissimilarity 
between two probability distributions, typically 
between a true distribution and an estimated 
distribution.

• KL divergence measures the divergence 
between two probability distributions, P and Q, 
by measuring the additional number of bits of 
information needed to specify P instead of Q.



2KL vs CE

• Both KL divergence and cross-entropy are used to 
measure the similarity or dissimilarity between 
two probability distributions.

• Both measures are commonly used in generative 
modeling to evaluate the performance of 
generative models and to optimize their 
parameters.

• Both measures are non-negative and minimize to 
zero if and only if the two distributions are 
identical.

• Both measures are asymmetrical. 



2KL vs CE

• KL Divergence focuses on the additional 
information needed to be accurate about the 
true distribution when starting with an 
approximation. It emphasizes the "gap" 
between the true distribution and the 
approximation.

• Cross Entropy is more about the efficiency of 
encoding events from the true distribution 
when using the code optimized for an 
approximation. It looks at the average number 
of bits needed and emphasizes the cost of using 
the code optimized for 



2Jensen-Shannon (JS) Divergence

• The JS divergence is a symmetric measure of the difference between 
two probability distributions.

• It is a smoothed version of the KL divergence, which can be used to 
compare two probability distributions that may have disjoint support.



2Jensen-Shannon (JS) Divergence

• The JS divergence is a symmetric measure of the difference between 
two probability distributions.

• It is a smoothed version of the KL divergence, which can be used to 
compare two probability distributions that may have disjoint support.

• The JS divergence is bounded by 0 and 1, and is equal to 0 if and only 
if the two distributions are identical.

• The JS divergence are used as a loss function to train generative 
models, such as Generative Adversarial Networks (GANs).



2Information Theory

• Information theory was initially developed to understand and 
improve communication systems, especially in the context of 
telegraphy and radio. 

• However, its scope has expanded to various other areas such as data 
compression, cryptography, and more recently, deep learning and 
generative models.

• In the context of deep generative models, information theory 
provides a theoretical framework for understanding and designing 
models that can generate high-quality and diverse samples from 
complex distributions.



2Entropy & Information

• Entropy is a measure of uncertainty or disorder in a random variable, 
while information is the reduction of uncertainty or surprise gained 
from an event. 

• In deep generative models, 

• the entropy of the output distribution can be used to measure the 
complexity of the generated samples, 

• while information can be used to measure the amount of information 
captured in the learned representation.

• They are formulated measures!



2Shannon’s Entropy

• Introduced by Claude Shannon in 1948 as a measure of uncertainty or 
information content in a random variable or probability distribution, 
defined as the expected value of the information contained in each 
possible outcome, given the probability distribution:

• maximized when all outcomes are equally likely (i.e., maximum uncertainty)

• minimized when there is only one possible outcome (i.e., no uncertainty)



2Conditional Entropy

• is the amount of uncertainty remaining in a random variable given 
that another random variable has been observed or known.

• Conditional entropy tells us how much information we gain about Y 
by observing X. If conditional entropy is high, it means that observing 
X gives us little information about Y, and vice versa.



2Entropy and Generative Models

• Entropy measures such as Shannon entropy and differential entropy 
are used to quantify the uncertainty or randomness in the generated 
samples.

• In a well-trained generative model, the generated samples should 
have high entropy, indicating that the model is able to produce a 
diverse set of samples that capture the variability in the training data.

• Example: In a generative adversarial network (GAN), the generator tries to 
generate samples that fool the discriminator. The entropy of the generated 
samples can be used to measure the diversity and quality of the samples 
generated by the GAN.



2Shannon’s “Self-Information” 

• The amount of information gained by an event with probability p is 
defined as:

• Shannon's definition of self-information meets several axioms:

• An event with probability 100% is perfectly unsurprising and yields no 
information.

• The less probable an event is, the more surprising it is and the more 
information it yields.

• If two independent events are measured separately, the total amount of 
information is the sum of the self-informations of the individual events



2Mutual Information

• is a measure of the amount of information that two variables share.

• MI quantifies the reduction in uncertainty about one variable given 
knowledge of the other variable, and can be represented using the 
Entropy:

• Example: MI can be used as a regularizer to encourage disentanglement of 
the latent variables in the learned representation.



2Information and Generative Models

• Information measures such as mutual information and conditional 
entropy are used to evaluate the ability of the generative model to 
capture the underlying structure of the data.

• In a well-trained generative model, the mutual information between 
the generated samples and the training data should be low, indicating 
that the generated samples are not duplicating the training data.

• Example: In a variational autoencoder (VAE), the encoder tries to compress 
the input data into a low-dimensional latent space. The mutual information 
between the latent space and the input data can be used to measure the 
amount of information that is preserved in the latent space (like a regularizer 
to encourage disentanglement of the latent variables in the learned 
representation)



2Next lecture:

• PART II: “Latent Spaces”

• (The Curse of) Dimensionality, Deep Features vs. Latent Spaces
• Latent Space properties, Continuity, Entanglement, etc
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