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Lesson 2: Latent Spaces
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Welcome to Part Il: “Latent Spaces”

This part includes two subsections:
.- (The Curse of) Dimensionality, Deep
Features vs. Latent Spaces
Latent Space properties: Continuity,
Entanglement, etc
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Dimensionality

In the context of generative models
(and deep learning), dimensionality
refers to the number of input
features or variables that describe
the input.

High-dimensional data poses

challenges such as increased
computational complexity and difficulty in
understanding and visualizing the data.
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Dimensionality

Dimensionality reduction techniques play a vital
role in mitigating these challenges by reducing
the number of dimensions while preserving
important information.

We’ll dive into the motivations, techniques, and

benefits of dimensionality reduction in
generative modeling. This will lead us to the idea

of a “latent space”.

Image by openai.org
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Curse of Dimensionality

* In generative modeling (and in machine learning general), the curse
of dimensionality refers to the challenges that arise when working
with high-dimensional data.

 High-dimensional data refers to datasets with a large number of
features or variables that describe each data point.

e CoD causes many problems in generative modelling such as “mode
collapse” in GANs (which we’ll learn later)

* The curse of dimensionality necessitates the need for dimensionality
reduction techniques to address these challenges.

figure by miegakure.com



Sampling from a Vector Space FURO’

* |n generative modeling, we require a intermediate vector space that
is both continuous and representative of the underlying data
distribution for effective sampling from a generator.

e A continuous vector space enables smooth interpolation and
exploration of the data, allowing for seamless transitions and

figure from https://doi.org/10.7554/eLife.67855

generation of new samples.




Sampling from a Vector Space

Representativeness implies that similar samples or concepts in the
original data space should be close to each other in the vector space,

facilitating accurate modeling and sampling.

However, directly working with the high-dimensional data space
poses challenges in achieving a continuous and representative

figure from https://doi.org/10.7554/eLife.67855

We need techniques that maps
high-dimensional data to a lower-
dimensional vector space.
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Evolution

EURO’

* In the field of generative modeling, the quest to find a suitable vector space
evolved through distinct eras, each characterized by different techniques ar
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PCA, Active Appearance

Models, etc. CNNs, Deep Embeddings, etc




Classical Methods

e C(Classical methods like Principal Component Analysis (PCA) were
primarily developed for dimensionality reduction.

e The goal was to capture the most important components of the
data, reducing the dimensionality while preserving as much
information as possible.

* The resulting principal components capture
the directions of maximum variance in the
original data.




Classical Methods

e C(Classical methods like Principal Component Analysis (PCA) were
primarily developed for dimensionality reduction.

* The goal was to capture the most important components of the
data, reducing the dimensionality while preserving as much
information as possible.

e To create a distribution representing the
dataset, you can model the principal
components as a multivariate normal
distribution.
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Generation with Classical Methods

e For complex data (like images etc) this idea
failed miserably because:

What if the data is multi-modal? PCA assumes that
the data follows a unimodal Gaussian distribution
along the principal components

Classical methods may not capture all the complex
and high-level semantics of the data. They focus on
capturing statistical variations rather than semantic
meaning. The generated samples may resemble the
statistical properties of the original data, but they
may not capture the full complexity or exhibit
higher-level semantics.
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Gaussian Mixture Models (GMM) |
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A A Gaussian mixture model (GMM) is a generative probabilistic model
that consists of multiple Gaussian distributions.

 Itis usedto model complex data that cannot be represented by a single
Gaussian distribution.

e GMMs are commonly used in clustering and density estimation tasks.

e The parameters of a GMM include the number of mixture components,
the mean and standard deviation of each component, and the mixing
coefficients that determine the weight of each component.



GMM for Generation?

A What kinds of problems focus on utilizing simple generation
techniques like GMMs for data-related tasks ?

e Simulations
e Games/Animation
* Qutlier Detection/Statistical Analysis

* Compression
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A The "semantic gap" is a well-known problem in the field of Al that refers
to the disparity between the low-level, perceptual representation of

data and the high-level, semantic understanding and interpretation of
that data.

* Insimpler terms, the semantic gap problem highlights the difficulty in
capturing and representing the rich and complex semantics, meaning,
and context of data usineg comoutational methods.
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Feature Space Evaluation

* Modern Era: Pattern Recognition and Handcrafted Features

 Focus on the use of handcrafted features, such as SIFT and HOG,

* Dimensionality Reduction - Feature Engineering:
 (Active Appearance Models)

* Deep Era: Deep Feature Learning

e By training a deep encoder on a large-scale dataset, automatically
extracting hierarchical and abstract features from the input data.

* Feature Engineering - Feature Learning:
 (Alexnet)

e Generative Era: The Latent Space

e Deep features shift into latent spaces for generative purposes

* Feature Learning - Latent Space:
 (VAEs)



Next lecture:

e PART II: “Latent Spaces”

. (The Curse of) Dimensionality, Deep Features vs. Latent Spaces
Latent Space properties: Continuity, Entanglement, etc



When they ask if you know who's been
spamming the chat with Star Wars memes:

Thanks
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