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Lesson 3: Auto-Encoding

Welcome to Part lll: “Auto-Encoding”

This part includes three subsections:
Autoencoders and Dimensionality
Reduction
Variational Inference and VAEs
Conclusions




Auto-Encoders
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Autoencoders comprise an encoder
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Figure 3-2. Items of clothing in the infinite wardrobe - each black dot represents an item
of clothing.




Auto-Encoders

Encoder: A module that compresses the
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Auto-Encoders
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The bottleneck layer in autoencoders
serves as the latent space, capturing a
compressed representation of the input

data.
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A diagram of the process described by the story is shown in Figure 3-2. You play the
part of the encoder, moving each item of clothing to a location in the wardrobe. This
process is called encoding. Brian plays the part of the decoder, taking a location in
the wardrobe and attempting to re-stitch the item. This process is called decoding.
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Figure 3-2. Items of clothing in the infinite wardrobe - each black dot represents an item
of clothing.




Training Auto-Encoders

There are 4 fundamental hyperparameters for training an autoencoder:

Code/Latent Space Size: The bottleneck size decides how much the
data has to be compressed. This can also act as a regularisation term.

Number of layers/nodes: While a higher depth/number of nodes

increases model capacity/complexity, a lower depth is faster to process
and avoid overfitting. /

Input g Reconstruction
Reconstruction Loss: This is the
most important one. It defines the o oty -~
character of the AutoEncoder. Py
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Auto-Encoder Loss function

* |n an autoencoder, the loss function plays a crucial role in training the
model and optimizing the reconstruction process.

 The choice of the loss function depends on the specific objectives and
characteristics of the autoencoder.

* There can be many features that shape the loss character of an AE

 Reconstruction (main)

e Regularization (main)

 Characterized loss (optional): Sparsity, Variational loss, other problem
dependent




Reconstruction Loss

 The primary objective of an autoencoder is to reconstruct the input
data from the compressed latent space.

* The reconstruction loss measures the discrepancy between the original
input and the reconstructed output.

e Commonly used reconstruction loss functions depend on the input data
and include:

* mean squared error (continuous data), binary cross-entropy (binary data),
Kullback-Leibler Divergence (distributions), Categorical Cross-Entropy (multiple
classes), etc.



Regularization Loss

 Autoencoders can be prone to overfitting, especially when the model
capacity is high or the dataset is limited.

 Regularization techniques, such as L1 or L2 regularization, drop-out etc,
can be incorporated into the loss function to discourage complex or
redundant representations.

 Regularization loss plays a vital role in controlling the behavior of an
autoencoder and ensuring that the learned representations possess
desirable properties.

* The specific choice and application of regularization techniques depend
on the characteristics of the data, the desired properties of the
representations, and the overall training objectives.



Characterized Loss

e A “characterized loss” component can be introduced to go beyond
traditional objectives like reconstruction or regularization, addressing
specific requirements or goals of the task at hand.

e Such as:

Sparsity Loss: Only a small subset of the latent variables or activations should be active or non-zero.

A\ Z | z]
Diversity Loss: Generation of diverse outputs by penalizing models that generate repetitive or similar samples.

C T T
(I/(n*(n—1)))=* 2 E d(x;, T )

Consistency Loss: entoluragésithe model to produce consistent predictions across augmented versions of the same
sample, improving generalization.



Characterized Loss: Clustering Unsupersed Clusiering of Sismic ignls sing

A clustering layer, connected to the AE’s
bottleneck, assigns the hidden features of each |
sample to a cluster. T M
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and clustering is performed by minimizing the Kullback-
> Leibler (KL) divergence between the soft assignments, g;;,
and the target distribution, pj;
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Characterized Loss: Clustering

EGRO2

* The clustering is done in two steps.
* Inthe initial step, they train by setting A=0 (i.e.
only reconstruction)

* |Inthe next step, the learned features are used to
initialize the cluster centroids (i; ) in the feature
space using k -means. Following, cluster
assignment and feature learning are jointly
performed (A=0.1)

Or, just for fun (and for a good project) regions
can be manually labeled for regions, and the
second step could be supervised! That would be
a mix of unsupervised and supervised learning!
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Fig. 1. Network architecture. The encoder and decoder are composed of
fully convolutional layers followed by max-pooling and up-sampling layers,
respectively. Reconstruction loss (Ly) and the clustering loss (L) are given
in the figure,
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and clustering is performed by minimizing the Kullback-
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and the target distribution, pj;
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Autoencoders comes in all types

 Convolutional, (even TCN)
e LSTM
* Fully-Connected...

CNN Autoencoder
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Autoencoders

A diagram of the process described by the story is shown in Figure 3-2. You play the
part of the encoder, moving each item of clothing to a location in the wardrobe. This
process is called encoding. Brian plays the part of the decoder, taking a location in
the wardrobe and attempting to re-stitch the item. This process is called decoding.
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Figure 3-2. Items of clothing in the infinite wardrobe - each black dot represents an item
of clothing.
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Auto-Encoders

 Autoencoders comes in all types

 Convolutional
e LSTM
* Fully-Connected

Weight Sharing
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Autoencoders

A diagram of the process described by the story is shown in Figure 3-2. You play the
part of the encoder, moving each item of clothing to a location in the wardrobe. This
process is called encoding. Brian plays the part of the decoder, taking a location in
the wardrobe and attempting to re-stitch the item. This process is called decoding.
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Figure 3-2. Items of clothing in the infinite wardrobe - each black dot represents an item
of clothing.




AE problems

* One of the main limitations of traditional AEs is that they do not
necessarily create a continuous latent space.

 This discontinuity makes it difficult for AEs to perform tasks like
interpolation or extrapolation) where generating new samples in
between or beyond the training data becomes challenging.

RN d(z) = decoder RM
' ' : because it
e s memorises
Refyi the
- training
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AE problems

e The fundamental problem with autoencoders, for generation, is that the
latent space they convert their inputs to and where their encoded
vectors lie, may not be continuous, or allow easy interpolation.

e This is fine if you're just replicating the same images.

RN d(z) = decoder RM




Increasing the latent space vector z dimension size (n), will improve the

replication/reconstruction success,

even worse.

Latent Space size ?

but will affect the continuity problem

Increasing the latent space vector z dimension size (n), will degrade the

replication/reconstruction performance.

10-D latent space

5-D latent space

2-D latent space

Input image
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Next lecture:

e PART Ill: Auto-Encoding

- Autoencoders and Dimensionality Reduction
- Variational Inference and VAEs

Conclusions
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Once | became a parent | finally
understood the scene where
Yoda gets so tired of answering
Luke's questions he just dies.
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