

Lect. Tuğba Pamay Arslan ITUNLP Research Group AI & Data Engineering, İstanbul Technical University

The Power of LLMs: Transformer (Part 1)

Table of Contents

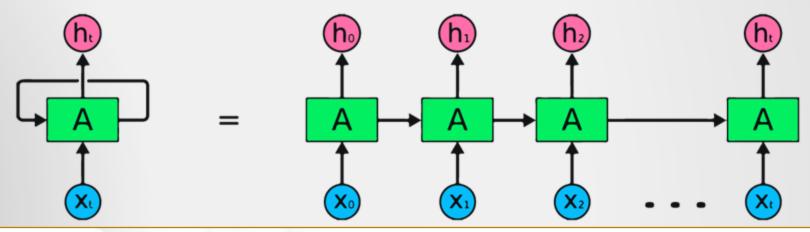
Recurrent Neural Networks (RNNs)

□ The Encoder-Decoder Model with RNNs

□ Attention

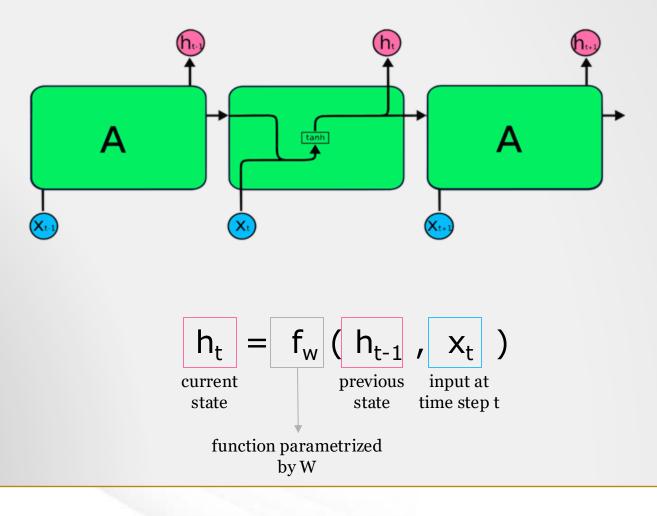
Recurrent Neural Networks

- → A specialized version of feed-forward networks for <u>sequence modeling</u>
 - e.g. time series, speech, text.
- → Have connections that form <u>cycles</u>, allowing them to use information from <u>previous</u> <u>inputs to inform the current output</u>.
- → Effective for tasks where <u>context</u> matters.
- → Flexible as the length of inputs and outputs can be changed

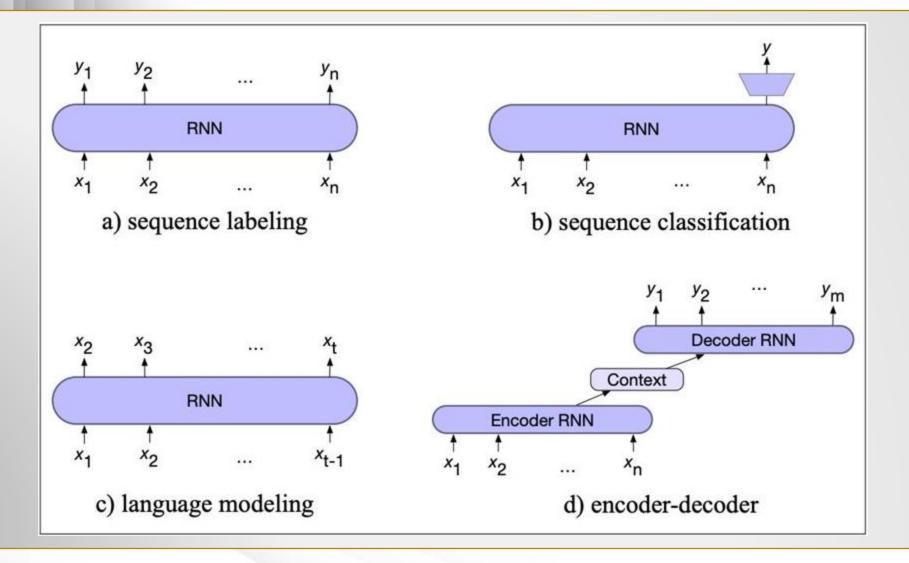


https://www.datacamp.com/tutorial/tutorial-for-recurrent-neural-network

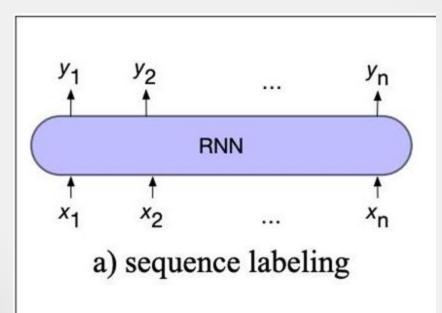
Recurrent Neural Networks



RNN Architectures in Sequence Modeling

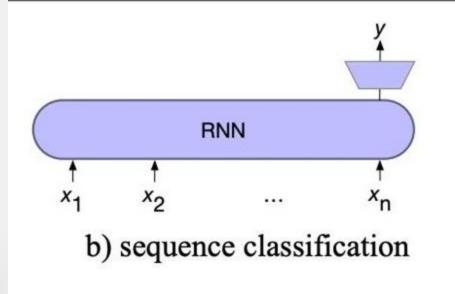


Sequence Labeling



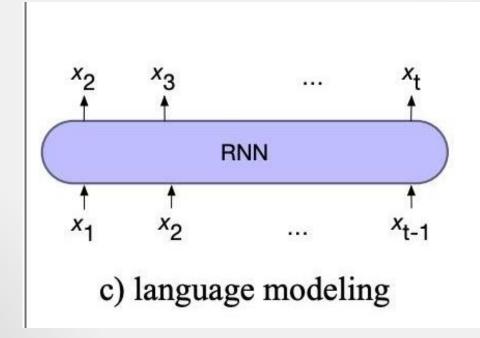
- → One-to-One: Each element of the input sequence is assigned a label.
- → One Input >> One Output
- → Example: Named Entity Recognition

Sequence Classification



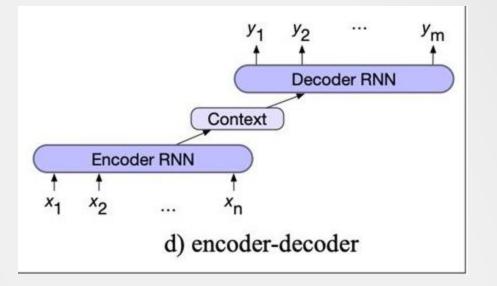
- → Many-to-One: Classifying an entire sequence into one label
- → Example: Sentiment Analysis

Language Modeling



- → One-to-One: Predicting the next word in a sequence given previous words
- → For this time, the output is continuous and represents the likelihood of the next token.
- → Then, this next token is used as an input in the next time step.

Encoder-Decoder

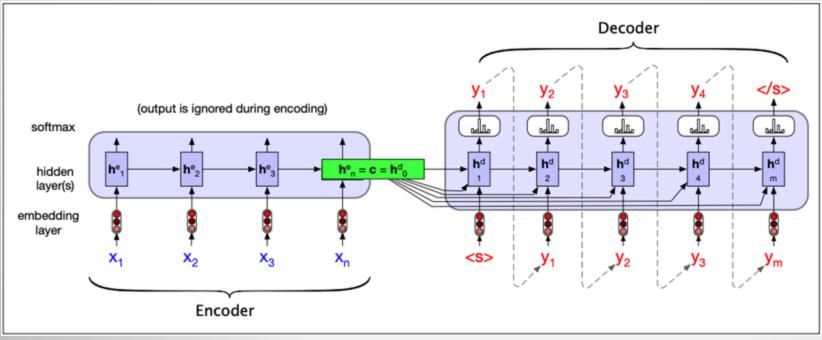


- → Example: Machine Translation, Text Summarization, or Question Answering
- → Two continuous steps:
 - → Encoding: The input is encoded into a representation
 - → Decoding: Generates a corresponding output sequence based on the encoded input (context)

- → also known as sequence-to-sequence networks (seq2seq)
- → |Input| may vary from |Output|
- → Generate <u>contextually</u> appropriate output sequences of arbitrary length, given an input sequence.
- → Particularly popular for Machine Translation. But also,
 - Summarization, Question Answering etc.

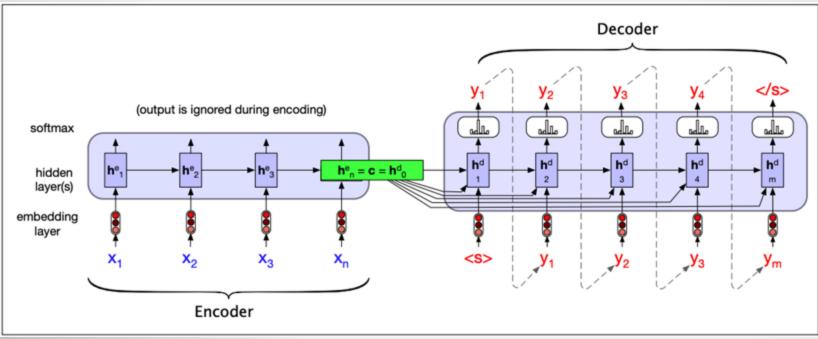
Consist of 3 conceptual components:

- → Encoder:
 - Process the input sequence, x_{1:n}
 - Create a <u>contextualized representation</u> (i.e., the context), h_{1:n}



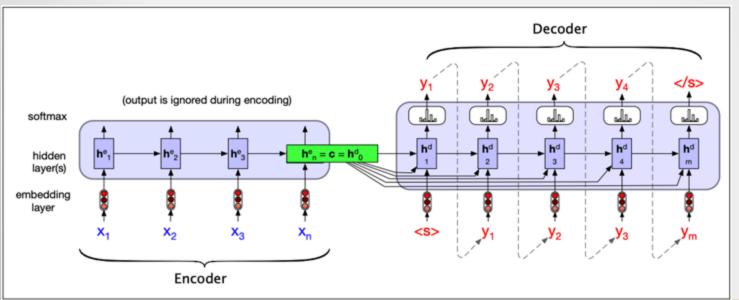
Consist of 3 conceptual components:

- → Context Vector, c:
 - ◆ A function of h_{1:n}
 - Conveys the essence of the input to the decoder.



Consist of 3 conceptual components:

- → Decoder:
 - ♦ Accepts c as input
 - Generates an arbitrary length sequence of hidden states, h_{1:m}
 - Also, a corresponding sequence of output states $y_{1:m}$ can be obtained.



Fixed-Length Encoding Bottleneck

Encoder compressing the entire input sequence into <u>a single fixed-length context vector</u>. |Input sequence \uparrow >>> Crucial details may be lost

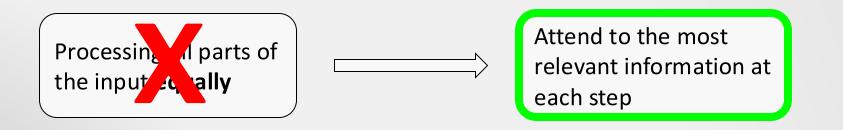
Capturing Long-Term Dependencies

RNNs struggle with long-term dependencies due to vanishing gradients and limited memory.

Sequential Processing / Limited Parallelism

Computationally slow, NOT compute the outputs of different time steps in parallel

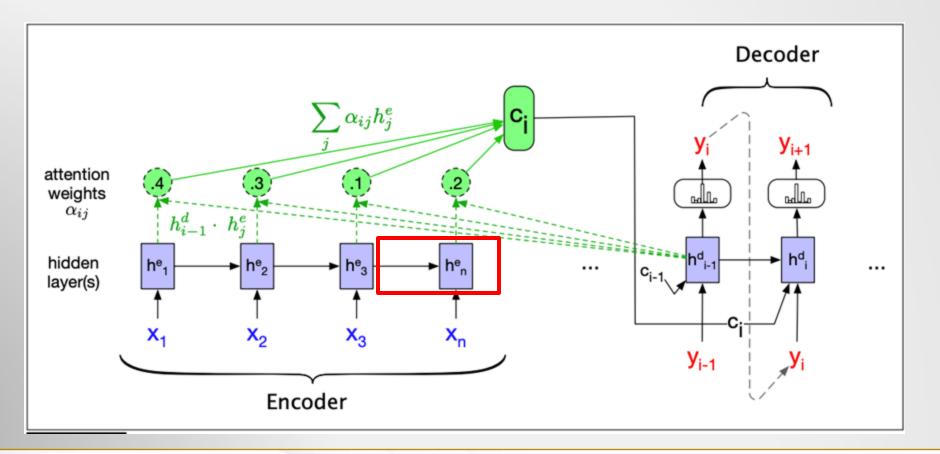
→ *Attend to* different parts of the **another sequence** when making predictions.



→ Replaces the static context vector, c, with one that is dynamically derived from the encoder hidden states, different for each token in decoding.

Attention

Step #1:
$$\operatorname{score}(\mathbf{h}_{i-1}^d, \mathbf{h}_j^e) = \mathbf{h}_{i-1}^d \cdot \mathbf{h}_j^e$$



Attention

