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Recurrent Neural Networks

- A specialized version of feed-forward networks for sequence modeling

¢ c.g.time series, speech, text.

- Have connections that form cycles, allowing them to use information from previous

inputs to inform the current output.

=> Effective for tasks where context matters.

- Flexible as the length of inputs and outputs can be changed
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https://www.datacamp.com/tutorial/tutorial-for-recurrent-neural-network
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RNN Architécturesin Sequence Modeling @
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Sequence Labeling @
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a) sequence labeling

- One-to-One: Each element of the input sequence is assigned a label.
= One Input >> One Output

= Example: Named Entity Recognition




Sequence Classification
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b) sequence classification

-> Many-to-One: Classifying an entire sequence into one label

= Example: Sentiment Analysis



Language Modeling
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c¢) language modeling

-> One-to-One: Predicting the next word in a sequence given previous words
= For this time, the output is continuous and represents the likelihood of the next token.

= Then, this next token is used as an input in the next time step.



Encoder-Decoder
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d) encoder-decoder

- Example: Machine Translation, Text Summarization, or Question Answering
=> Two continuous steps:
=> Encoding: The input is encoded into a representation

=> Decoding: Generates a corresponding output sequence based on the encoded input (context)



The Encoder-Decoder with RNNs

- also known as sequence-to-sequence networks (seq2seq)
= |Input| may vary from |Output]

- (Generate contextually appropriate output sequences of arbitrary length, given an

Input sequence.
- Particularly popular for Machine Translation. But also,

¢ Summarization, Question Answering etc.



The Encoder-Decoder with RNNs
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Consist of 3 conceptual components:
- Encoder:
¢ Processthe input sequence, Xy

¢ Create a contextualized representation (i.e., the context), hy.,

Decoder

(output is ignored during encoding)
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The Encoder-Decoder with RNNs
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Consist of 3 conceptual components:
- Context Vector, c:
¢ A function of hy,

¢ Conveys the essence of the input to the decoder.

Decoder

(output is ignored during encoding)
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The Encoder-Decoder with RNNs
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Consist of 3 conceptual components:
- Decoder:
& Acceptscasinput

¢ Generates an arbitrary length sequence of hidden states, h;.,

¢ Also, a corresponding sequence of output states y;., can be obtained.
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Limitations ?

Fixed-Length Encoding Bottleneck

Encoder compressing the entire input sequence into a single fixed-length context vector.

|Input sequence| 1 >>> Crucial details may be lost

Capturing Long-Term Dependencies

RNNs struggle with long-term dependencies due to vanishing gradients and limited memory.

Sequential Processing / Limited Parallelism

Computationally slow, NOT compute the outputs of different time steps in parallel




Attention

- *Attend to* different parts of the another sequence when making predictions.

. Attend to the most
Processin parts of . .
. | > relevant information at
the inpu lly
each step

- Replaces the static context vector, ¢, with one that is dynamically derived from
the encoder hidden states, different for each token in decoding.
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Step #2: oij = sofUnax(score(hf_hh?))
exp(score(h?_,,h¢)
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