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The Power of LLMs: Transformer (Part 2)



Self-Attention

- *Attend to* different parts of the input sequence when making predictions.

- “Self” ~ “ attention to “the same sequence which is currently being encoded.”

T

- 3 Input Tokens: Smcnmx( . )
¢ Query (Q)/Key (K)/ Value (V)

- How?

4 Calculate attention scores by comparing each Query with every Key. These

scores show how much each token should "attend" to others.

€ Use attention scores to create a weighted sum of the Value vectors, producing a

new representation for each token that considers relevant context.



arnn( B2 L)
Self-Attention

- Query (Q):
¢ Representation of the element of interest that you want to obtain information about.
- Key (K):
4 aprojection of the input data
¢ Usedto compute how relevant each element in the input sequence is to the Q.
- Value (V):
4 also a projection of the input data
€ Once the attention scores are calculated between Q and K, these scores are applied to the V to produce

the weighted output representation.



Self-Attention - Formula

- QKT: The dot product of each query with all keys, resulting in a matrix of attention scores.
= Vd,,: A scaling factor where dk is the dimensionality of the keys (and queries).

This prevents the dot products from becoming too large, stabilizing gradients during training.

- Main Calculation Steps:
-> Compute the similarity between each query and
every key.
. . _ softmax
= Normalize the similarity scores using softmax. v
vV W
= Use the normalized scores to calculate a weighted

sum of the value vectors. =

The self-attention calculation in matrix form



Attention vs. Self-Attention

- Focus of Attention:
¢ Self-Attention: Each token in an input attends to all other tokens within the same

sequence, capturing relationships within the input itself.

¢ Attention: Attend to relevant parts of the input when producing each output token.

- Computation:
4 Self-Attention: Computes attention weights across all positions within the input
sequence. Providing a global view of the sequence.
4 Attention: Calculates attention weights from the decoder’s current state to each
position in the encoder’s output. Improving alignment and accuracy in generation

tasks between input and output.



Step-by-Step / Self-Attention

Self-attention

|||||||



©

Step-by-Step / Self-Attention EURO’

Saif-attention

||||||||||||




©

Step-by-Step / Self-Attention EURO’

Selt-attention

“““““

uuuuuuuuuuuuuuuuuuuuuuu




©

Step-by-Step / Self-Attention EURO’

aaaaaaaaaaa

[zT:T+]
t ! t ! t ]
|

||||||||||||||||||




©

Step-by-Step / Self-Attention EURO’

lllllllll

ooonlenon
1 T 1 1 T r

input #1 imput #2 input #3




~ Step-by-Step EURO’




©

Step-by-Step / Self-Attention EURO’

aaaaaaaaaaa

Ly SO0
— [IeT2] —

[2[=1]
t ! t ! t !
I

||||||||||||||||||




©

Step-by-Step / Self-Attention EURO’

Saif-attenti
By SOONE SCong
—  [ElelE] — — &
hay valua
[o]s LIzl=] | |




T A

~ EEE B —E —H
r | r

UUUUU

[z:1]
i f t 1 t f
|




T A

ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

¥¥¥¥¥

queny SCOMe SCOME SC0ME
S ) 1 I — —
ky kay kay
1 4 213 |1
|||||| ngul B2 input #3
1]0]1 ol2]0 1]11]1




©

EURO’

llllllll

multiplication

|
— H — B — 0
| T | |
i i

iiiiii




©

Step-by-Step / Self-Attention EURO’

Seil-atiention
llllllllll |M‘ oo o |..._
SCOne S00ne 50008
— [Tz — B — B — B
ey i
3

it input&L2 inpul g3




T A

©

Step-by-Step / Self-Attention EURO’

Self-; Hon
caton - mulipicatin - pication [1e[se]1s] o
query sCore sCore
— []e]7] — B — B -

0 3 3 S 7 73 ) R % ) 3 R Y EY K
! f t f t f
|

uuuuuu

nput #1 nput #3




. @

©

Step-by-Step / Self-Attention EURO®

output #1
aaaaaa EEE
Sedf-attent jon
I [ I
uuuuuuu 00 | 0.0 MI - Itiplica ||.° 40 MI - ultlpllcallonlu E L] I P
query SCOr score
B — — [ — B

LT[R [zIs14]
f f f f t f
I I

iiiiii

input #1 input #3




©

Step-by-Step / Self-Attention EURO’

Repeat the process for Input #2
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Repeat the process for Input #2
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Repeat the process for Input #3
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Repeat the process for Input #3
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Transformer

- “Self-Attention” mechanism is the key component of
Transformers

Extending to Transformers:

e |nputsto the self-attention module:
o Embedding module
o Positional encoding

e Modules between self-attention modules:
o Linear transformations
o LayerNorm
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