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ABSTRACT Graphics processing units (GPUs) are specially designed for parallel applications and perform
parallel operations much faster than central processing units (CPUs). In this work, we focus on the
performance of the Advanced Encryption Standard (AES) on GPUs.We present optimizations which remove
bank conflicts in shared memory accesses and provide 878.6 Gbps throughput for AES-128 encryption on
an RTX 2070 Super, which is equivalent to 4.1 Gbps per Watt. Our optimizations provide more than 2.56x
speed-up against the best GPU results in the literature. Our optimized AES implementations on GPUs even
outperform any CPU using the hardware level AES New Instructions (AES-NI) and legacy FPGA-based
cluster architectures like COPACOBANAandRIVYERA. Even on a low-endGPU likeMX250, we obtained
60.0 Gbps throughput for AES-256 which is generally faster than the read/write speeds of solid disks. Thus,
transition fromAES-128 toAES-256when usingGPUswould providemilitary grade security with no visible
performance loss.With these breakthrough performances, GPUs can be used as a cryptographic co-processor
for file or full disk encryption to remove performance loss coming from CPU encryption. With a single GPU
as a co-processor, busy SSL servers can be free from the burden of encryption and use their whole CPU
power for other operations. Moreover, these optimizations can help GPUs to practically verify theoretically
obtained cryptanalysis results or their reduced versions in reasonable time.

INDEX TERMS Cryptography, encryption, cryptanalysis.

I. INTRODUCTION
The Advanced Encryption Standard (AES) [10] still with-
stands all cryptanalytic attacks after 20 years of investiga-
tion and is arguably the most used encryption algorithm. Its
usage in many platforms led to many optimized software
implementations of AES for different CPU architectures.
Although graphics processing units (GPUs) mainly target
graphics application like video gaming, advances in tech-
nology made them a good candidate for general purpose
computing. Their architecture has single instruction multiple
data (SIMD) structure and they can perform the same type of
operation onmultiple data and obtain better performance than
CPUs in parallelizable applications. Thus, GPUs can easily
outperform CPUs when a parallelizable mode of operation is
chosen for block cipher encryption.

CUDA optimizations for some lightweight ARX (Add-
Rotate-XOR) based ciphers are provided in [3] and they
obtained encryption throughput of 468 Gbps for HIGHT,
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2593 Gbps for LEA, and 3063 Gbps for revised CHAM on
a single RTX 2070 Nvidia GPU. However, a general purpose
block cipher like AES has more complicated round func-
tion compared to these ARX-based lightweight block ciphers
and generally has lower throughput. There are many works
focusing on the optimization of AES for GPUs, mostly on
CUDAdevices. CUDA implementations of these works reach
high throughput and are more than an order of magnitude
faster than software implementations on CPUs. Although the
obtained throughputs are increased in years, this is mainly
due to the fact that newer GPUs have more cores or higher
clock rates. Since almost none of the papers in the literature
provided source codes of their AES implementations, it is
not possible to compare different results, let alone check the
correctness of the provided experimental results.

Fast AES encryption is necessary for file or disk encryp-
tion, exhaustive search attacks, practically verifying theo-
retically obtained cryptanalysis results, and improving the
mining performance of cryptocurrencies that use AES-based
hashing algorithms in their proof of work consensus
algorithms.
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There are three main implementation techniques that can
be used for GPU implementation of AES: naive, table based,
and bitsliced. In the naive approach all of the operations in the
round function of AES are implemented directly. Table based
implementation divides the input into parts and for every
possible input for each part, output of the round function is
pre-computed and stored in a table. This way a single AES
round can be turned into 16 table look-up and 16 XOR oper-
ations by storing four pre-computed tables of 4 KB. The third
approach is the bitslicing technique where each of the 128-bit
round input bits are stored in different 128 registers and
operations are performed to each bit independently. Bitslicing
technique provides SIMD level parallelism at the software
level because if the registers are n-bit, we can perform n block
encryption operations in parallel by storing n blocks in these
128 registers.

In early optimizations like [20], authors observed that
the table based implementation was better than the naive
approach on GPUs and they obtained 8.28 Gbps on an
Nvidia 8800 GTX. Although there are many memory types
in GPUs, they kept the tables in the constant memory.
Moreover, they used four threads for the encryption of a
single 128-bit block which means 4 bytes/thread granularity.
However, 1 byte/thread and 16 bytes/thread granularities are
also possible since AES operations are performed on bytes
and block size of AES is 16 bytes.

The question of finding the best memory type for
tables and granularity are answered in [16]. They showed
that 16 bytes/thread provides better performance than
4 bytes/thread and 1 byte/thread since it does not require
communication between threads. Moreover, it was shown
in [16] that storing the tables in the shared memory instead
of the constant memory increases the throughput from
5.0 Gbps to 35.2 Gbps on a GTX 285. The tables are
copied to shared memory from the global memory at the
beginning of each kernel. In order to reduce these memory
operations, the granularity is increased to 32 bytes/thread
in [1] so that a thread encrypts two blocks instead of one.
They achieved 279.9 Gbps on a GTX 1080. Moreover,
they used the new warp shuffle feature to speed-up the
memory operations but they observed that warp shuffles
reduced the performance instead. A similar table based imple-
mentation is recently performed in [4] and they obtained
123 Gbps for GTX 970, 214 Gbps for GTX 1070, and
310 Gbps for RTX 2070. The main bottleneck in these
table based implementations is the shared memory bank
conflicts.

One of the earliest bitsliced CUDA implementations
is provided in [19] and they achieved 78.6 Gbps on a
GTX 480. More recently, [23] achieved 605.9 Gbps on an
Nvidia Tesla P100. The GPU architecture allows limited
number of registers per thread block and 100% occupancy
can be achieved on modern GPUs only when a thread
uses 64 or less 32-bit registers. However, since a bitsliced
implementation requires at least 128 register for every bit
of the 128-bit block, a bitsliced implementation cannot fully

occupy the GPU. These bitsliced implementations can pro-
vide better results on future GPUs if they come with more
registers per thread block.

A software implementation running on a CPU can never
compete with these GPU results. However, modern CPUs
are equipped with hardware instructions for performing AES
encryption and this is always overlooked in publications
about the performance of AES on GPUs. For fair comparison,
GPU results should be compared with the hardware level
implementation of AES on CPUs. In this work we obtained
134.7 Gbps AES Encryption on an Intel i7-10700F CPU
which is 2.072 Gbps per Watt. This throughput is close to the
results of [1] and [4]. Moreover, since CPUs do not consume
as much as power as GPUs, throughput per Watt value of
i7-10700F CPU is better than the best GPU results of [1]
and [4] and close to the results of [23]. Thus, latest CPUs
have better energy efficiency.

Our literature analysis showed that the best AES through-
put on GPUs using the table based implementation were
obtained by keeping the tables in the shared memory of
the GPU. This is because shared memory is the fastest
memory type in GPUs and AES tables are small enough
to fit in the shared memory. However, modern GPUs have
warps of 32 threads and shared memory consists of also
32 banks (note that the earlier devices had 16 banks).
When two different threads try to read data from the same
bank, bank conflict occurs and the accesses are serialized.
Bank conflicts are the main bottleneck of the AES opti-
mizations because intermediate values of AES are random
and make each thread to access a random shared memory
bank.

To obtain the best AES performance, in this work we
aimed to remove the bottleneck in the previous best AES
optimizations on GPUs by removing the bank conflicts in
shared memory accesses. We achieved this aim by exploiting
the architecture of modern GPUs and the relation between
the tables of AES by analyzing the structure of the matrix
of AES. Thus, we obtained the first table based AES CUDA
implementation that keeps the tables in the shared memory
and still has zero bank conflicts.

In order to show that our optimizations are applica-
ble to all modern CUDA architectures, we used differ-
ent mobile and desktop CUDA devices with different
architectures and observed that our optimizations provide
at least 2.56x speed-up against the previous best results
on GPUs. Our optimizations also outperform CPUs with
AES-NI support in terms of throughput per Watt and some
FPGA-based clusters like COPACOBANA and RIVYERA
S3-5000.

Finally, we considered the effects of improbable events like
soft errors on our implementations. Nvidia provides Tesla
GPUs with error correction code (ECC) memory for scien-
tific computations and Geforce GPUs without ECC memory
mainly for gaming. We observed that soft errors have negli-
gible effects on our implementations and they can be used on
GPUs without ECC memory.
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FIGURE 1. One round of AES. Figure is from [17].

FIGURE 2. Counter (CTR) mode of operation for block ciphers. Figure is from [17].

We made our CUDA implementations publicly available
on GitHub to allow further optimization and comparison
between future optimizations.1

This paper is organized as follows: In Section II we
describe AES. In Section III we provide the details of AES-NI
and provide AES-NI performance of modern CPUs. We pro-
vide our GPU optimizations in Section IV and provide our
experiment results in Section V. In Section VI we discuss
the possible effects of soft errors on our implementation.
We conclude the paper with Section VII. (1), as shown at the
bottom of the next page.

II. AES
The Advanced Encryption Standard [10] supports key sizes
of 128, 192 and 256 bits and it is a Substitution-Permutation
network. We represent AES with k-bit key as AES-k . All
three versions of AES have a block size of 128 bits which

1Our optimized CUDA codes that we used in this work are available at
https://www.github.com/cihangirtezcan/CUDA_AES

is represented as a 4 × 4 matrix of bytes. The values of
this internal state are in the finite field F256 that is defined
according to x8 + x4 + x3 + x + 1, which is an irreducible
polynomial.

The number of rounds Nr that is applied to the state
depends on the key size of AES. AES-128 has Nr = 10,
AES-192 has Nr = 12, and AES-256 has Nr = 14. One
round of AES is shown in Fig. 1 and can be described as
the application of SubBytes, ShiftRows, MixColumns, and
AddRoundKey operations, respectively. These operations can
be summarized as follows: f (x) = AK ◦MC ◦SR ◦SB(x),
where

• SubBytes (SB): the same 8-bit to 8-bit S-Box is applied
to each byte of the state 16 times in parallel;

• ShiftRows (SR): i-th row is rotated i bytes to the left;
• MixColumns (MC): each column is multiplied by a con-
stant 4× 4 invertible matrix M ;

• AddRoundKey (AK): The internal state is XORed with a
128-bit round key.

W [i] =


K [i] for i < Nk
W [i− Nk ]⊕ SB(SR(W [i− 1]))⊕ R[i/Nk ] if i ≥ Nk and i ≡ 0 (modNk )
W [i− Nk ]⊕ SB(W [i− 1]) for i ≥ Nk ,Nk > 6, i ≡ 4(mod Nk )
W [i− Nk ]⊕W [i− 1] otherwise

(1)
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Note that the first round starts with an additional AddRound-
Key operation and the MixColumns operation is omitted in
the last round.

The key schedule of AES-k transforms the k-bit master
key into Nr + 1 round keys which are 128 bits regardless
of the value of k . We can denote the round key array by
W [0, . . . , 4×Nr+3] where each value is of 32 bits. The first
Nk words ofW [·] are always the master key where N128 = 4,
N192 = 6, and N256 = 8. The rest of W [·] are updated
according to the Equation 1 where K [i] is the i-th column
of the master key and R[·] is an array of constants.
AES round operationsMixColumns, SubBytes, ShiftRows,

and AddRoundKey can be implemented independently in
software. However, an implementation that uses T-tables is
also provided in [10]. With the assumption that the archi-
tecture supports 32-bit instructions, for an 8-bit S-box input,
we can pre-compute the 32-bit output corresponding to a
column after the applications of sub-byte, shift-row, and
mix-column operations. Thus, by pre-computing 4 tables
of size 256 32-bit values, for each column we can reduce
the one round encryption process to four table look-ups
and four XOR operations. Fastest GPU implementations of
AES use T-tables and keep them in the shared memory of
the GPU which is the fastest memory type on a GPU. Our
main improvements in this work come from removing bank
conflicts in shared memory accesses. The four T-tables Ti can
be calculated for every possible byte value of x as follows

T0[x] =


2 · S[x]
S[x]
S[x]

3 · S[x]

 T1[x] =


3 · S[x]
2 · S[x]
S[x]
S[x]



T2[x] =


S[x]

3 · S[x]
2 · S[x]
S[x]

 T3[x] =


S[x]
S[x]

3 · S[x]
2 · S[x]


where ‘‘·’’ represents multiplication in the Galois field of 28.
Note that any T-table of AES differ from each other only by
byte rotations. We use this observation in Section IV-B to
store a single T-table in the shared memory, instead of four.

Although AES is a byte oriented cipher, using 32-bit
unsigned integers in software implementations reduces the
number of instructions and provide better performance. If we
represent the columns of AES with c0, c1, c2, and c3, a round
encryption of AES in C or CUDA language can be performed
using T-tables as follows

where rk0, rk1, rk2, and rk3 represent 32-bit words of the
round key.

III. AES NEW INSTRUCTIONS
In March 2008, CPU manufacturers AMD and Intel pro-
posed an extension to x86 instruction set which is called
Advanced Encryption Standard New Instructions (AES-NI).
As described in Intel’s white paper [13], AES-NI contain
four instructions AESDEC, AESDECLAST, AESENC, and
AESENCLAST that perform one round AES decryption or
encryption. Since the last round of AES does not contain
the MixColumns operation, we need to use AESENCLAST
and AESDECLAST only for the last round. AES-NI has
two more instructions called AESIMC and AESKEYGE-
NASSIST which are used in the key schedule. Basic C code
examples of AES-NI for all key sizes of AES using CTR,
CBC, and ECBmodes of operations are also provided in [13].

CTR mode of operation for block ciphers encrypts a
counter value and XORs the output with the plaintext block.
Counter value is incremented for each block. This way it
allows full parallelization. Note that this mode of operation
turns the block cipher into a keystream generator. Therefore,
a counter value should not be used more than once. For this
reason, generally the counter is concatenated to a randomly
generated nonce for each encryption as shown in Fig. 2.

CPUs with AES-NI provide users to perform AES encryp-
tion at the hardware level. Before the production of the first
CPUs with these instructions, it was expected in [12] that
these new instruction sets provide around 2-3x speed-up for
non-parallelizable modes like CBC encrypt and the perfor-
mance speed-up exceeds an order of magnitude over any soft-
ware only AES implementations when using parallelizable
modes of operations like CBCdecrypt andCTR. Performance
results for Intel i7-980X was later provided in Intel white
paper [2] and the practical experiments met the theoreti-
cal expectations. They achieved 0.24 cycles/byte on 6 cores
(12 threads) for AES-128 on parallel modes for large buffers.
The Intel i7-980X CPU has a maximum turbo frequency
of 3.60 GHz and a base processor frequency of 3.33 GHz.
Since the turbo was disabled in [2], the base clock speed
of 3.33 GHz means that they got 102.4 Gbps throughput.

Looking at single core/thread performance provides more
information about the speed-up that comes with AES-NI.
In [2], authors obtain 1.30 cycles/byte on a single core
of Intel i7-980X and our implementation also achieved
1.30 cycles/byte on a single core of Intel i7-6700K. This
shows that AES-NI performance has not changed after
six generations. i7-6700K has a base processor frequency
of 4.00 GHz and maximum turbo frequency of 4.20 GHz.
Although, it has only 4 cores and 8 threads, due to its
higher frequency than i7-980X, we obtained 90.6 Gbps on
8 threads.

Since modern CPUs have 8 or more cores, we also checked
AES-NI performance on Intel i7-10700F. i7-10700F has
8 cores and 16 threads with a base processor frequency
of 2.90 GHz and maximum turbo frequency of 4.80 GHz.
We obtained 134.7 Gbps on i7-10700F using all 16 threads.
These results are summarized in Table 1.
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TABLE 1. AES-128 throughput results of CPUs with AES-NI in counter mode of operation. Thermal Design Power (TDP) represents the maximum power
consumption under full load when CPU works at the base clock speed.

TABLE 2. Some architectural differences between compute capabilities of CUDA devices.

Intel and AMD have recently announced that their future
CPUs will have vectorized AES-NI instructions, namely
VAESENC, VAESENCLAST, VAESDEC, and VAESDE-
CLAST which can work on wide registers like the ones that
are available on the AVX512 architectures. In [11], based
on simulations and theoretical analysis, it was claimed that
these new instructions can provide a 4 times speed-up on
AES encryptions that use parallelizable mode of operation,
like CTR which is shown in Fig. 2. Although these vector-
ized instructions would reduce the total instruction count,
such a speed-up would not be possible unless the CPUs
contain 4 times more pipes that can perform AES encryption.
These new CPUs are on the market for some time now and
we have not seen any practical verification of the claims
of [11]. For this reason, we are not including these theoretical
results in Table 1. However, even if these claims are correct,
the theoretical value of 0.24 cycle/byte that was obtained
in [11] means that even an 8 core CPU at 4.00 GHz would
not surpass our optimizations on modern GPUs. On the other
hand, we believe that these new vectorized AES instructions
can be used to speed up the key schedule. Such an improve-
ment can be useful when performing exhaustive search or
similar tasks but the key schedule is performed only once in
a CTR encryption. Thus, it would not affect the throughput.

IV. AES GPU OPTIMIZATIONS
Our breakthrough AES performance on CUDA devices
comes from the following achievements:

1) Replacing the two SHIFT and one AND instructions
with __byte_perm() CUDA instruction for byte rota-
tions of T-tables

2) Removing the shared bank memory conflicts when
accessing the T-tables

3) Removing the shared bank memory conflicts when
accessing the S-box in the last round and during the
key schedule

To show that our optimizations do not focus on a spe-
cific architecture or compute capability (CC), we performed
all of our experiments in this work on different mobile
and desktop GPUs. Some architectural differences between

compute capabilities that might affect the performance of our
optimizations are provided in Table 2. However, many details
about the GPU memory systems remain unknown to the
public because Nvidia provides very limited information. It is
shown in [22] that inmany different architectures the through-
put and latency of the shared and global memory accesses
differ significantly. Similarly, it is shown in [22] that the
access latency varies significantly on different architectures
when there are shared memory bank conflicts. We provide
the specifications of the GPUs that we used in this work
in Table 3.

TABLE 3. The specifications of the GPUs that are used in this work. Note
that clock rates might change depending on the GPU manufacturer.

A. __byte_perm() CUDA INSTRUCTION
Although many processors have the SHIFT instruction, they
rarely have a single instruction for rotation. For this rea-
son, bit rotations are generally implemented as two SHIFT
operations and an AND operation. CUDA devices do not
have an instruction for bit rotations as well but we observed
that __byte_perm() CUDA instruction can be used for byte
permutations. This way we can perform a rotation using a
single instruction, instead of three.

__byte_perm(x, y, n) instruction of CUDA returns four
selected bytes from two 32-bit unsigned integers x and y.
It has three inputs where x and y are the two 32-bit values
whose bytes are going to be selected and n is the selector
which represents the bytes that are going to be selected. The
ShiftRows operation of AES consists of 8, 16, and 24-bit
left rotations of 32-bit values. These rotation numbers are
multiples of 8, so __byte_perm() CUDA instruction can be
used for these permutations. Since our implementations use
T-tables we do not perform the ShiftRows in our codes.
However, the T-tables of AES are just byte rotations of each
other and in our optimizations we are going to keep multiple

VOLUME 9, 2021 67319



C. Tezcan: Optimization of Advanced Encryption Standard on GPUs

copies of only one T-table T0 in the shared memory. Remain-
ing T-tables are going to be obtained by the __byte_perm()
CUDA instruction. T-table Ti is just i byte right rotation of T0.

Since we need to rotate a 32-bit value, we chose x = y in
our implementations. By analyzing the __byte_perm() CUDA
instruction, we observed that for 8, 16, 24-bit right rotations,
the values of n should be 25923, 21554, and 17185, respec-
tively. These integer values correspond to 0 × 00006543,
0 × 00005432, and 0 × 00004321 in hexadecimal. Thus,
we defined our Rot() device function that rotates a 32-bit
value to right as follows:

We implemented rotation operations both with the
__byte_perm() instruction and traditional arithmetic opera-
tions. We observed around %2 speed-up in all tested GPUs
when the rotations are performed via the __byte_perm()
instruction.

B. REMOVING SHARED MEMORY BANK CONFLICTS IN
T-TABLES ACCESSES
Almost every CUDA implementation we observed so far
kept the four T-tables using 256 32-bit values in shared
memory which results in 4 KBs of shared memory. Our
experiments showed that keeping these tables in the shared
memory instead of any other type of GPU memory provides
at least 10.23x speed-up. Since the GPU kernel is run with
more than 256 threads, the first 256 threads write these tables
T0, T1, T2, and T3 to shared memory by copying them from
the global memory as follows:

where T0G, T1G, T2G, and T3G are the T-tables that are
kept in the global memory.

Shared memory is divided into 32-bit memory modules
and these banks can be accessed simultaneously. Note that
the bandwidth of each bank is 32 bits per clock cycle and
successive 32-bit values are assigned to successive banks.
Thus, when we declare the table T0 as an array of 256 32-bit
words, T0[0], T0[31], T0[63], T0[95], T0[127], T0[159],
T0[191], T0[223] are stored in bank 0. Similarly, T0[1],
T0[32], T0[64], T0[96], T0[128], T0[160], T0[192], T0[224]
are stored in bank 1, and so on.

Each warp of CUDA consists of 32 threads and if each
thread in a warp accesses different banks then no bank con-
flicts occur. An exception is when all threads in a warp try
to access the same shared memory value in which case the
data is broadcast and no bank conflict occurs. But if two
or more threads in a warp try to read data from the same
shared memory bank, these requests become serialized and
this situation is referred as a bank conflict.

T-table accesses during the encryption are randomized
because during encryption intermediate round values become
random. This results in many bank conflicts each round.
We remove these bank conflicts by duplicating the T-table
32 times for each bank and reserve banks to individual threads
in a warp. In CUDA we can store a copy of the T-table T0 in
each 32 bank as follows

and each thread in a warp can access its own bank to avoid
bank conflicts as follows

This way we spend 32 KBs of shared memory instead
of 1 KB. Duplicating remaining three tables would sum up to
128 KBs but the GPUs on the market have 64 KBs of shared
memory. Although CUDA devices with compute capabilities
7.0, 8.0, and 8.6 have sharedmemory of sizes 96KB, 163KB,
and 99 KB, only 64 KB of them are accessible by users.
This is why current GPUs do not allow us to store a second
T-table in each bank. However, since all of the T-tables of
AES can be obtained from a single T-table by performing
byte rotations, in this work we only kept T0 in the shared
memory and obtained other table values by rotating T0. This
way one round of AES encryption turns into the following
CUDA codes

Note that if we can get GPUs with more shared memory in
the future, we can keep more than one T-table in the shared
memory and get rid of the rotation instructions. This would
provide significant speed-ups.

C. REMOVING SHARED MEMORY BANK CONFLICTS
IN S-BOX ACCESSES
We cannot use the T-tables in the last round of AES because
the last round does not have the MixColumns operation. For
this reason, we keep the AES S-box in the shared memory
and use it in the last round. Moreover, the S-box is also used
in the key schedule. Although we perform the key schedule
once on CPU and transfer round keys from CPU to GPU for
encryption, we need to perform the key schedule repeatedly
on the GPU cores for other use cases like exhaustive search
attack.
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Removing the shared memory bank conflicts in T-tables
provided huge speed-up in experiments on CUDA devices
with Kepler, Maxwell, and Pascal architectures. However,
the speed-up in our experiments with RTX 2070 Super which
has Turing architecture was less than what we expected.
We used Nvidia Nsight Compute to detect the bottleneck
and observed that the bank conflicts of the S-box accesses
caused the bottleneck for this GPU. We do not have another
32 KBs of shared memory so we cannot keep 32 copies of
the S-box in the way we just did for the T-table T0. However,
since the S-box produces an 8-bit output, we can store every
four values of the S-box in a single bank since bank size is
32 bits. This way the total table size reduces to 8 KBs from
32 KBs. We achieved this by storing the S-box in a three
dimensional array S[64][32][4] where the thread i can access
the output of the S-box with input j as S[j/4][i][j%4]. The
following CUDA code copies the S-box values SG[256] from
the global memory and writes them to our three dimensional
array S[64][32][4] in the shared memory:

Thus, the last round of AES-128 that does not have any
sharedmemory bank conflicts turns into the following CUDA
code:

Our motivation to remove the bank conflicts in the S-box
was due to the fact that unlike previous architectures, RTX
2070 Super with Turing architecture did not achieve the
expected speed-up when we removed the bank conflicts in
the T-tables.We overcame this problemwhenwe removed the
bank conflicts in the S-box and obtained an implementation
that has zero bank conflicts.

This optimization provided speed-ups for other GPUs
that we used in this work as well, with the exception
of GTX 860M, which is the oldest GPU that we used.
For example, we can verify 229.18 keys per second on
GTX 860M without this optimization when performing an
exhaustive search attack. However, this number reduces to
228.97 keys per second when we remove the bank con-
flicts in the S-box. Apparently the bank conflicts in the
S-box accesses are not the cause of the bottleneck for this
GPU and using more shared memory by having 32 copies
of the S-box and performing byte rotations for the out-
put of S-box reduce the occupancy and cause a bottleneck.

Therefore, this optimization might cause a negative effect on
legacy GPUs.

Also note that GTX 860M and GTX 970 GPUs both have
the Maxwell architecture and this optimization provided sig-
nificant speed-ups on GTX 970. Aside from the architecture,
the capabilities of GPUs are determined by their compute
capability. GTX 860M and GTX 970 have compute capabili-
ties 5.0 and 5.2, respectively. Therefore, the performance loss
of GTX 860M might be coming from its compute capability.

The performance change for RTX 2070 Super and GTX
860M with this optimization shows that the bottleneck might
be different for different GPU architectures or models and
further optimizations might be necessary for future architec-
tures. One reason for these differences might be explained
by the performance of different compute capabilities under
shared memory bank conflicts. In [22], authors observed that
Maxwell has superiority against Fermi and Kepler in per-
formance under shared memory bank conflicts. Our results
show that this performancemight also depend on the compute
capability.

V. POTENTIAL APPLICATIONS
Our AES optimizations can be used for file or disk encryp-
tion, exhaustive search attacks, practically verifying theo-
retically obtained cryptanalysis results, and improving the
mining performance of cryptocurrencies that use AES-based
hashing algorithms in their proof of work consensus algo-
rithms. These potential applications either use the key sched-
ule only once as in encryption or multiple times as in the
exhaustive search attack. Thus, we provide our experimental
results for these two cases in the following subsections.

A CUDA kernel has two launch parameters: block and
thread counts. After many benchmarking, in our implemen-
tations we defined thread count as 1024 to achieve maximum
performance and upper bounded the block count again as
1024 to fully occupy the GPU. Thus, a thread performs more
than one encryption when the total number of encryptions
exceeds 220. For example, an experiment that performs 235

encryptions use 210 CUDA blocks with 210 threads and
each thread performs 215 encryptions. Thus, for 2n block
encryptions our implementations have 16 bytes/thread gran-
ularity when n < 20 and 2n−20 · 16 bytes/thread granularity
when n ≥ 20.

A. ENCRYPTION
We performed all our experiments on various CUDA SDKs
like versions 6.5, 7.5, 8, 9, 10, and 11.1 and many com-
pute capabilities like 3.7, 5.0, 5.2, 6.1, and 7.5. Although,
we observed negligible differences, compute capability 5.2
generally provided the best results. Note that a GPU is back-
ward compatible in terms of compute capability. For example,
RTX 2070 Super has CC 7.5 and can run codes that are
compiled for earlier CC like 6.1 or 5.2. Our throughput results
for AES-256, AES-192, and AES-128 on many different
Nvidia GPUs are provided in Table 4.
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FIGURE 3. Memory chart for 230 CTR block encryptions (16 GBs) on RTX 2070 Super using CUDA SDK 11.1. Compiled for compute
capability 7.5.

Since plaintext is not used during the encryption in CTR
mode, we do not need to copy the plaintext to GPU memory.
Thus, AES encryption can be performed even before the
plaintext is ready. Note that we can copy the keystream from
the GPU global memory to RAM asynchronously while GPU
kernel keeps encrypting other counters. Thus, an optimized
implementation would not suffer from memory copy oper-
ations. For instance, the RTX 2070 Super has a memory
bandwidth of 448 GB/second.

Memory chart for 230 CTR block encryptions (16 GBs)
on RTX 2070 Super is provided in Fig. 3 in order to show
the intensity of shared memory accesses compared to other
memory operations.

File encryption and full disk encryption are other appli-
cations that could benefit from these GPU performances.
Although we reached 878.6 Gbps on an RTX 2070 Super,
current disk drives have lower read and write speeds. Thus,
the speed of these applications would be limited by the disk
speed and the encryption operation would not cause any
delay. We even obtained 102.7 Gbps AES-128 throughput
on MX 250 which is a basic GPU that is used in ultrabooks.
Thus, encryption would cause no delay even when a low-end
GPU is used as a cryptographic co-processor.

Table 4 shows that even the low-end GPUs have
AES-256 encryption performance which is better than the
current read and write speed of solid state disks. Thus,
for file or full disk encryption, transition from AES-128 to
AES-256 would not have any visible performance loss.

GPUs are more efficient than CPUs in parallel operations
due to their single instruction multiple data level parallelism.
GPUs can outperform CPUs when encrypting huge files
using block ciphers with a mode of operation that is par-
allelizable. The literature has many AES GPU performance
results that are significantly faster than software implemen-
tations on CPU. The most recent and the best results using

TABLE 4. Throughput results of AES with counter mode of operation.

the table based implementation in the literature belong to [4],
which is published in March 2020. The best throughputs
obtained in [4] are 123 Gbps for GTX 970, 214 Gbps for GTX
1070, and 310 Gbps for RTX 2070. Although these results
are impressive, comparing them to software implementations
on CPUs would be misleading because almost every Intel
and AMD CPU come with AES-NI since 2009. For instance,
we achieved 90.6 Gbps on a 4 core Intel CPU i7-6700K.
This shows that modern 8-10 core CPUs can easily exceed
200 Gbps which make them comparable to the GPU results
of [4] and better in terms of energy efficiency.

Our encryption results are summarized in Table 5 and
comparedwith the results of themost recent and the best GPU
results of the related works.

Our optimizations allowed us to reach 315.2 Gbps on GTX
970. This result allows us to compare our optimizations with
the previousGPU results because [4] reached 123Gbps on the
same GPU. Thus, our throughput is at least 2.56 times faster.
Our optimizations also outperform bitsliced implementa-
tions of [19] and [23] as it is shown in Table 5. Moreover,
we obtained 878.6 Gbps on RTX 2070 Super which shows
that GPUs outperform every consumer grade CPU that come
with AES-NI. This also shows that better GPUs like RTX
2080 Super or the new RTX 3000 series have throughputs
at terabits per second level. To the best of our knowledge,
these are the best AES throughput results. These results show
that servers can use a GPU as a cryptographic co-processor
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TABLE 5. AES-128 encryption performance on different CUDA devices and Intel CPUs with AES-NI. For fair comparison, the table is sorted with respect to
Gbps per Watt. CPU results are given in italic.

and perform encryption and decryption operations on the
fly without consuming any CPU power. In this way, busy
SSL servers would be free from the burden of encryption.

B. EXHAUSTIVE SEARCH
The security of block ciphers is upper bounded by
exhaustive search. When an attacker captures a single
plaintext-ciphertext pair, they can encrypt the plaintext block
with every possible key and check if the expected ciphertext
block is observed. This is a generic attack and any block
cipher with a k-bit key can be broken by performing 2k

encryptions. Thus, the key length k is decided depending
on the current technology. For instance, NIST predicts it is
secure to use keys of length 112 bits or longer until 2030 (see
NIST SP 800-57, Recommendation for Key Management).

We used the key schedule algorithm only once when we
were measuring the throughput of our optimized CUDA
codes since we use a single key for encryption. However,
for exhaustive search we use a different key for every block
encryption. Thus, the key schedule algorithm should also be
run on the GPU. Removing the shared bank conflicts in the
S-box accesses provides a huge speed-up for the exhaustive
search because the S-box is used four times in every round
of the key schedule. Our best optimizations allowed us to
check 232.433 keys per second on an RTX 2070 Super when
performing an exhaustive search attack on AES-128. Since a
year has around 224.910 seconds, one would need 270.657 RTX
2070 Super GPUs to break AES-128 in a year.

Our exhaustive search results for AES-256, AES-192,
and AES-128 on many different Nvidia GPUs are provided
in Table 6.

In order to observe the performance gain of our opti-
mizations, we used Nvidia Nsight Compute version 2020.2.1
(Build 29181059). We first implemented AES using the four
T-tables T0, T1, T2, and T3 as it is done in [1], [5], [16],
[20], and [4]. Although the previous studies did not publish
their CUDA codes, the performance of this implementation
matches the throughput results of [4]. Thus, comparison of
our optimizations with this implementation can be regarded

TABLE 6. Number of key searches per second for the exhaustive search
attack on AES.

as the comparison of our best results with the best results
of the previous studies. Then we removed the bank conflicts
in T-tables in our second kernel, and in the third kernel we
removed the bank conflicts in S-boxes. We performed exper-
iments on these kernels by searching 230 AES-128 keys on
an RTX 2070 Super and we provide Nvidia Nsight Compute
results in Table 7. For comparison, we also performed CTR
mode AES-128 encryption of 230 blocks (16 GBs) using our
best optimization and we provide Nvidia Nsight Compute
results also in Table 7.

CUDANsight Compute results that are provided in Table 7
confirm that our optimizations provide bank conflict free
implementations of AES for the first time. It also shows
a 2.61x speed-up when performing exhaustive search com-
pared to the naive T-table based CUDA implementation
which was the best GPU implementation before this work.
It can be seen that the achieved occupancy and active warps
are close to the theoretical values in our optimizations.
Although registers per thread are reported as 56, 60, 60,
and 47, these large numbers do not affect the occupancy
because compiling the same codes for CC 5.2 instead
of 7.5 reduces the register count to 32 and does not result in
any observable speed-up.

Although our main speed-ups came from removing shared
memory bank conflicts, we also benefited from using the
__byte_perm() CUDA instruction. We observed around %2
performance gain when we replaced our rotations with
the __byte_perm() CUDA instruction which is provided
in Table 8. Bit rotations are common in cryptographic algo-
rithms. Thus, when the rotation number is a multiple of 8,
we recommend the use of the __byte_perm() CUDA instruc-
tion instead of the common practice of using two SHIFT

VOLUME 9, 2021 67323



C. Tezcan: Optimization of Advanced Encryption Standard on GPUs

TABLE 7. Nvidia Nsight Compute version 2020.2.1 (Build 29181059) results of optimizations for 230 key searches or 230 CTR block encryptions (16 GBs)
on RTX 2070 Super using CUDA SDK 11.1. Compiled for compute capability 7.5.

TABLE 8. Latency comparison between __byte_perm() CUDA instruction
and arithmetic rotation when performing 235 key searches during an
exhaustive search attack. Arithmetic rotations use two SHIFT operations
and an AND operation.

operations and an AND operation. Depending on the archi-
tecture and the code, __byte_perm() CUDA instruction might
provide significant performance gain.

We also compared our results with FPGAs and Biryukov’s
imaginary GPU-based supercomputer [7]. Another hardware
that can be used for cryptanalysis is FPGA-based clus-
ter architectures like COPACOBANA or RIVYERA [14].
In 2006, the architecture of a special-purpose hardware sys-
tem called COPACOBANA (Cost-Optimized Parallel Code
Breaker), which provides a cost-performance that is signif-
icantly better than that of recent PCs for the exhaustive
key search on DES, is introduced in CHES workshop [18].
COPACOBANA uses 120 Xilinx Spartan-3 FPGAs, costs
around 10,000 Euros and checks approximately 65 billion
DES keys per second. RIVYERA, the commercial suc-
cessor of the COPACOBANA, uses 128 Xilinx Spartan-6
LX150 FPGAs in its newer version and achieves around
691 billionDES keys/s. However, since the cost of RIVYERA

is around 100,000 Euros, it looks like the cost-performance
have stayed the same.2

It was noted that the 2013 version of RIVYERA which
is known as RIVYERA S3-5000 can check 500 million
AES keys in a second. The official webpage3 of the prod-
uct later announced that a newer version of RIVYERA can
verify 119 billion keys per second for AES which equals to
20.52 times of keys that we get from a single RTX 2070 Super
GPU. Thus, 21 RTX 2070 Super GPUs which costs less than
$10,500 can outperform that version of RIVYERA which
costs around 100,000 Euros. Thus, our GPU optimizations
outperform FPGA-based systems like COPACOBANA and
the old versions of RIVYERA for AES key search attacks.
However, for fair comparison between modern GPUs and
FPGAs it should be noted that:
• 21 GPUs would require other parts like CPUs, mother-
boards, and power supplies which would at least double
the cost.

• RIVYERA results come from an earlier version which
uses old FPGAs. Performance of the current RIVYERA
models should be significantly better.We could not com-
pare the latest RIVYERA products with GPUs because
their performances are not provided by themanufacturer.

• RIVYERA is a commercial product. Thus, aside from
its building cost, its price also contains recuperation of
the R&D effort, management and sales overhead, logis-

2Performance and price values are obtained via personal communication.
3www.sciengines.com
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tics, quality control and planning, and at least one-year
warranty.

• Aside from the price, number of operations per Watt
should also be compared.

With the advent of fast GPUs, Biryukov [7] tried to
visualize the performance of a GPU-like special purpose
hardware created just to apply exhaustive search attack on
AES in 2012. They considered the related-key attack on
AES-256 [8] introduced at ASIACRYPT 2009 and the time-
memory-key trade-off attacks on AES-128 [9] introduced at
SAC 2005 on the full AES which require 299.5 and 280 AES
operations, respectively. They concluded that an organiza-
tion that has one trillion US$ for building and designing a
supercomputer based on GPUs like Nvidia GT200b could
theoretically perform the related-key attack in a year and the
time-memory-key attack in a month.

Since we can perform around 254 AES operations in a
month using a single RTX 2070 Super, we can perform
the time-memory-key attack in a month with 226 RTX
2070 Super GPUswhichwould cost 33 billionUS$. Although
this is just the cost of the GPUs, a distributed system designed
with this many GPUs would cost significantly cheaper than
the one trillion US$ estimate of Biryukov. This result shows
how the GPU technology is evolved since 2012. Also note
that we assumed that an RTX 2070 Super costs 500 US$ but
recently RTX 3070 is launched which has more cores than
RTX 2070 Super and one can get an RTX 3070 for the same
price.

VI. ON SOFT ERRORS
One concern for GPU computation is soft errors. Soft errors
are flip of bits in the memory mainly because of environ-
mental reasons. This is why RAMs with error correcting
codes (ECC) are used in workstations for scientific com-
putations. However, regular PC RAMs do not have ECC.
In the case of GPUs, Nvidia provides Tesla GPUs with
ECC for scientific computations and Geforce GPUs without
ECC mainly for gaming. A soft error in GPU memory would
not be detectable in gaming because a wrong pixel in one
frame would be almost impossible for a human eye to detect.
In [24], on 60 Geforce 8800 GTS 512 GPUs 72-hour run of
their Memtest for CUDA provided no errors on 52 GPUs, less
than 10 DRAM errors on 7 GPUs, and 57 DRAM errors on
1 GPU. All of these errors were silent. Namely, there were
bit flips but no other visible abnormal behavior. However,
in [15], authors conducted a large-scale assessment of GPU
error rate on over 50,000 hosts on a distributed computing
network by runningMemtestG80 and observed no soft errors.
In our experiments we also did not observe any soft errors.

Thus, there is no hard evidence for soft errors in GPUs. Yet,
for the case of exhaustive search, soft errors happening with a
very low probability would not cause any problem. However,
a bit flip during encryption in CTRmodewould cause a single
bit error in decryption which might be hard to detect. Thus,
some form of software level ECC can be used for these cases
like the one proposed in [21]. Software level ECC should add

just a small performance drop. It would not affect encryption
speed because the bottleneck would still be the hard drive, not
the GPU.

Overclocking GPUs should be avoided when they are
going to be used for encryption since overheating can cause
soft errors. Note that soft errors cannot be a reason to avoid
Geforce GPUs for encryption because CPU encryption would
rely on RAM and regular PC RAMs do not support ECC
either. Thus, our optimized codes can be safely used on GPUs
with non-ECC memory.

VII. CONCLUSION
In this work we provided a bank conflict free GPU imple-
mentation of AES for the first time and reached 878.6 Gbps
throughput for AES-128 encryption. Our optimizations on
GPUs are faster than any CPU with hardware level AES
instructions AES-NI, are 2.56 times faster than the previ-
ous best table based GPU optimizations, and provide bet-
ter performance-cost ratio compared to legacy FPGA-based
cluster architectures like COPACOBANA and RIVYERA.
Even on a low-end GPU likeMX 250, we obtained 60.0 Gbps
throughput for AES-256 which is currently faster than the
read/write speeds of solid disks that are commercially avail-
able. Thus, transition from AES-128 to AES-256 when using
GPUs would provide military grade security with no visible
performance loss.

We conclude that with our optimizations GPUs can be
used as a cryptographic co-processor for file or full disk
encryption to reduce performance loss that comes from CPU
encryption. With a single GPU as a co-processor, busy SSL
servers would be free from the burden of encryption and
use the whole CPU power for other operations. Moreover,
these optimizations would help GPUs to practically verify the
theoretically obtained cryptanalysis results or their reduced
versions in reasonable time.

Finally, many hash functions like SHA-3 Competition
candidates Arirang, Cheetah, Echo, Lane, Lesamnta, Lux,
Shavite-3, or Vortex use AES rounds or its variants in their
internal operations. Moreover, how much these algorithms
can benefit from AES-NI was shown in [6]. Some of these
AES-based hash functions are used by cryptocurrencies in
their proof ofwork consensus algorithms. Thus, our optimiza-
tions can be used to improve GPU based mining for some
cryptocurrencies using AES-based hash functions.
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