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Performance Engineering on CPUs and GPUs: 
- CPU and Memory: Things to be Careful for Performance -
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CPU registers
0.3-0.5ns

L1 and L2 cache
10ns-20ns 
$1000s/GByte

G Bytes
80ns-200ns
~$100/GByte

T Byte, 10 ms
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~$1/GByte
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L2 Cache
Cache manager
64-128 byteBlock

Computer: Memory



2

• Memory system, and not processor speed, is often the 
bottleneck for many applications. 

• Memory system performance is largely captured by two parameters, 
latency and bandwidth. 

• Latency is the time from the issue of a memory request to the time the data is 
available at the processor. 

• Bandwidth is the rate at which data can be pumped to the processor by the 
memory system. 

Computer: Memory
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• It is very important to understand the difference between latency and 
bandwidth. 

• Consider the example of a fire-hose (or an assembly line). If the water 
comes out of the hose two seconds after the hydrant is turned on, the 
latency of the system is two seconds. 

• Once the water starts flowing, if the hydrant delivers water at the rate 
of 5 gallons/second, the bandwidth of the system is 5 gallons/second. 

• If you want immediate response from the hydrant, it is important to 
reduce latency. 

• If you want to fight big fires, you want high bandwidth. 

Computer: Memory
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• Consider a processor operating at 1 GHz (1 ns clock) connected to a 
DRAM with a latency of 100 ns (no caches). Assume that the processor 
has two multiply-add units and hence is capable of executing four 
instructions (in total) in each cycle of 1 ns. 

• The following observations follow: 
• The peak processor rating is 

• 4 GFLOPS. 
• Since the memory latency is equal to 100 cycles and block size is one word, 

every time a memory request is made (i.e., for each word), the processor must 
wait each data for 

• 100 cycles

Computer: Memory
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• On the above architecture, consider the problem of computing a dot-
product of two vectors. 

• A dot-product computation performs one multiply-add (2 flops) on a single pair 
of vector elements, i.e., each floating-point operation requires 

• one 
data fetch. 

• It follows that the peak speed of this computation is limited to one floating 
point operation every 

• 100 ns, or a speed of 
• 10 MFLOPS
which is a very small fraction of the peak processor rating! 

Computer: Memory
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• Caches are small and fast memory elements between the processor 
and DRAM. 

• This memory acts as a low-latency high-bandwidth storage. 
• If a piece of data is repeatedly used, the effective latency of this 

memory system can be reduced by the cache. 

• Can we improve the dot-product example with a cache?

Computer: Memory
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• The fraction of data references satisfied by the cache is called the 
cache-hit ratio of the computation on the system. 

• Cache-hit ratio achieved by a code on a memory system often 
determines its performance. 

Memory: Caches
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Consider the architecture from the previous example. In this case, we 
introduce a cache of size 32 KB with a latency of 1 ns or one cycle. We use 
this setup to multiply two matrices A and B of dimensions 32 × 32. 
So, the cache is large enough to store matrices A and B, as well as the result 
matrix C.

What is the peak performance without the cache?
10 MFlops

Memory: Caches
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These observations are made (100ns/word, 1 ns/cycle, 4 instructions/cycle):
• Fetching the two matrices into the cache takes approximately 

• 200 µs.
• Multiplying two n × n matrices takes 2n3 operations which can be performed in 

• 16K cycles (or 16 µs) at four instructions per cycle.
• The total time for the computation is therefore approximately the sum of time for 

load/store operations and the time for the computation itself, i.e.,
• 200 + 16 µs.

• This corresponds to a peak computation rate of 
• 64K FLOP/216 µs or 303 MFLOPS.

Memory: Caches
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• Data reuse is critical for cache performance.
• In our example, we had O(n2) data accesses and O(n3)

computation. This asymptotic difference makes the above 
example particularly desirable for caches.

• Repeated references to the same data item is related to 
temporal locality.
• Temporal locality in the example does not have an impact 

since the cache can store everything.
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• Memory bandwidth is determined by the bandwidth of the memory 
bus as well as the memory units.

• Memory bandwidth can be improved by increasing the size of memory 
blocks.

• The underlying system takes 
• l time units (where l is the latency of the system) to deliver
• b units of data (where b is the block size).

Computer: Memory
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• Consider the same setup as before (no cache), except in this case, the 
block size is 4 words instead of 1 word. We repeat the dot-product 
computation in this scenario:

• Assuming that the vectors are laid out linearly in memory, eight FLOPs (four 
multiply-adds) can be performed in 

• 200 cycles.
• This is because a single memory access fetches four consecutive words in the 

vector.
• This corresponds to a FLOP every 

• 25 ns, for a peak speed of 
• 40 MFLOPS.

Computer: Memory
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• It is important to note that increasing block size does not change 
latency of the system. 

• Physically, the scenario illustrated here can be viewed as a wide data 
bus (4 words or 128/256 bits) connected to multiple memory banks. 

• In a more practical system, consecutive words are sent on the memory 
bus on subsequent bus cycles after the first word is retrieved. 

Computer: Memory
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• The example clearly illustrated how increased bandwidth 
results in higher peak computation rates. 

• The data layouts were assumed to be such that consecutive 
data words in memory were used by successive instructions 
(spatial locality of reference). 

• If we take a data-layout centric view, computations must be 
reordered to enhance spatial locality of reference. 

Computer: Memory
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Consider the following code fragment:
for (i = 0; i < 1000; i++) 

for (j = 0; j < 1000; j++)

column_sum[i] += b[j][i];

The code fragment sums columns of the 
matrix b into a vector column_sum. 

Caches: Spatial Locality
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Let’s see an example

Caches: Spatial Locality
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