
2

Performance Engineering on CPUs and GPUs: 
- CPU and Memory: Things to be Careful for Performance -

Kamer Kaya, Sabancı Universityncc@ulakbim.gov.tr



2Computer: Memory

1

10

100

1000

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

CPU

19
82

Processor-Memory
Performance Gap:
(grows 50% / year)

Pe
rf

or
m

an
ce

“Moore’s Law”



2

CPU registers
0.3-0.5ns

L1 and L2 cache
10ns-20ns 
$1000s/GByte

G Bytes
80ns-200ns
~$100/GByte

T Byte, 10 ms
(10,000,000ns)
~$1/GByte

Register

L1 Cache

Memory

Disk

Operand

Block

Page

compiler
1-8 byte

Cache manager
32-64 byte

OS
4K-8K byte

L2 Cache
Cache manager
64-128 byteBlock

Computer: Memory



2

• Memory system, and not processor speed, is often the 
bottleneck for many applications. 

• Memory system performance is largely captured by two parameters, 
latency and bandwidth. 

• Latency is the time from the issue of a memory request to the time the data is 
available at the processor. 

• Bandwidth is the rate at which data can be pumped to the processor by the 
memory system. 

Computer: Memory



2

• It is very important to understand the difference between latency and 
bandwidth. 

• Consider the example of a fire-hose (or an assembly line). If the water 
comes out of the hose two seconds after the hydrant is turned on, the 
latency of the system is two seconds. 

• Once the water starts flowing, if the hydrant delivers water at the rate 
of 5 gallons/second, the bandwidth of the system is 5 gallons/second. 

• If you want immediate response from the hydrant, it is important to 
reduce latency. 

• If you want to fight big fires, you want high bandwidth. 

Computer: Memory



2

• Consider a processor operating at 1 GHz (1 ns clock) connected to a 
DRAM with a latency of 100 ns (no caches). Assume that the processor 
has two multiply-add units and hence is capable of executing four 
instructions (in total) in each cycle of 1 ns. 

• The following observations follow: 
• The peak processor rating is 

• 4 GFLOPS. 
• Since the memory latency is equal to 100 cycles and block size is one word, 

every time a memory request is made (i.e., for each word), the processor must 
wait each data for 

• 100 cycles

Computer: Memory



2

• On the above architecture, consider the problem of computing a dot-
product of two vectors. 

• A dot-product computation performs one multiply-add (2 flops) on a single pair 
of vector elements, i.e., each floating-point operation requires 

• one 
data fetch. 

• It follows that the peak speed of this computation is limited to one floating 
point operation every 

• 100 ns, or a speed of 
• 10 MFLOPS
which is a very small fraction of the peak processor rating! 

Computer: Memory



2

• Caches are small and fast memory elements between the processor 
and DRAM. 

• This memory acts as a low-latency high-bandwidth storage. 
• If a piece of data is repeatedly used, the effective latency of this 

memory system can be reduced by the cache. 

• Can we improve the dot-product example with a cache?

Computer: Memory



2

• The fraction of data references satisfied by the cache is called the 
cache-hit ratio of the computation on the system. 

• Cache-hit ratio achieved by a code on a memory system often 
determines its performance. 

Memory: Caches



2

Consider the architecture from the previous example. In this case, we 
introduce a cache of size 32 KB with a latency of 1 ns or one cycle. We use 
this setup to multiply two matrices A and B of dimensions 32 × 32. 
So, the cache is large enough to store matrices A and B, as well as the result 
matrix C.

What is the peak performance without the cache?
10 MFlops

Memory: Caches



2

These observations are made (100ns/word, 1 ns/cycle, 4 instructions/cycle):
• Fetching the two matrices into the cache takes approximately 

• 200 µs.
• Multiplying two n × n matrices takes 2n3 operations which can be performed in 

• 16K cycles (or 16 µs) at four instructions per cycle.
• The total time for the computation is therefore approximately the sum of time for 

load/store operations and the time for the computation itself, i.e.,
• 200 + 16 µs.

• This corresponds to a peak computation rate of 
• 64K FLOP/216 µs or 303 MFLOPS.

Memory: Caches



2Caches: Temporal locality

• Data reuse is critical for cache performance.
• In our example, we had O(n2) data accesses and O(n3)

computation. This asymptotic difference makes the above 
example particularly desirable for caches.

• Repeated references to the same data item is related to 
temporal locality.
• Temporal locality in the example does not have an impact 

since the cache can store everything.



2

• Memory bandwidth is determined by the bandwidth of the memory 
bus as well as the memory units.

• Memory bandwidth can be improved by increasing the size of memory 
blocks.

• The underlying system takes 
• l time units (where l is the latency of the system) to deliver
• b units of data (where b is the block size).

Computer: Memory



2

• Consider the same setup as before (no cache), except in this case, the 
block size is 4 words instead of 1 word. We repeat the dot-product 
computation in this scenario:

• Assuming that the vectors are laid out linearly in memory, eight FLOPs (four 
multiply-adds) can be performed in 

• 200 cycles.
• This is because a single memory access fetches four consecutive words in the 

vector.
• This corresponds to a FLOP every 

• 25 ns, for a peak speed of 
• 40 MFLOPS.

Computer: Memory



2

• It is important to note that increasing block size does not change 
latency of the system. 

• Physically, the scenario illustrated here can be viewed as a wide data 
bus (4 words or 128/256 bits) connected to multiple memory banks. 

• In a more practical system, consecutive words are sent on the memory 
bus on subsequent bus cycles after the first word is retrieved. 

Computer: Memory



2

• The example clearly illustrated how increased bandwidth 
results in higher peak computation rates. 

• The data layouts were assumed to be such that consecutive 
data words in memory were used by successive instructions 
(spatial locality of reference). 

• If we take a data-layout centric view, computations must be 
reordered to enhance spatial locality of reference. 

Computer: Memory



2Memory: Caches



2

Consider the following code fragment:
for (i = 0; i < 1000; i++) 

for (j = 0; j < 1000; j++)

column_sum[i] += b[j][i];

The code fragment sums columns of the 
matrix b into a vector column_sum. 

Caches: Spatial Locality



2

Let’s see an example

Caches: Spatial Locality



2

Co-funded by the Horizon 2020 programme 
of the European Union

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101101903. The JU receives 
support from the Digital Europe Programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland, 
Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North 
Macedonia, Iceland, Montenegro, Serbia

Thanks


	Varsayılan Bölüm
	Slide 1
	Slide 2: Introduction to Computers
	Slide 3: Processor: Pipelining
	Slide 4: Processor: Branches
	Slide 5: Processor: Branches
	Slide 6: Processor: Branches
	Slide 7: Computer: Memory
	Slide 8: Computer: Memory
	Slide 9: Computer: Memory
	Slide 10: Computer: Memory
	Slide 11: Computer: Memory
	Slide 12: Computer: Memory
	Slide 13: Computer: Memory
	Slide 14: Memory: Caches
	Slide 15: Memory: Caches
	Slide 16: Memory: Caches
	Slide 17: Caches: Temporal locality
	Slide 18: Computer: Memory
	Slide 19: Computer: Memory
	Slide 20: Computer: Memory
	Slide 21: Computer: Memory
	Slide 22: Memory: Caches
	Slide 23: Caches: Spatial Locality
	Slide 24: Caches: Spatial Locality
	Slide 25: Cache: Set Associativity
	Slide 26: Cache: Set Associativity
	Slide 27: Cache: Set Associativity
	Slide 28: Cache: Set Associativity
	Slide 29
	Slide 30: Memory: A summary
	Slide 31: Alternative Approaches for Hiding Memory Latency 
	Slide 32: Memory: Prefetching
	Slide 33: Memory: Prefetching
	Slide 34: Memory: Prefetching

	Başlıksız Bölüm
	Slide 35: Thanks


