
2

Performance Engineering on CPUs and GPUs:
- CPU and Memory: Things to be Careful for Performance -

Kamer Kaya, Sabancı Universityncc@ulakbim.gov.tr

2

Caches we have are usually set-associative.
• The cache is divided into groups of blocks,

called sets.
• Each memory address maps to exactly one set

in the cache, but data may be placed in any
block within that set.

If each set has 2x blocks, the cache is 2x -way
associative cache.

Cache: Set Associativity
• If a cache has 2s sets and each block has 2n bytes,

the memory address can be partitioned as follows.

• Our arithmetic computations now compute a set
index, to select a set within the cache instead of an
individual block.

Block Offset = Memory Address mod 2n

Block Address = Memory Address / 2n

Set Index = Block Address mod 2s

Address (m bits)

s(m-s-n) n

Tag Index Block
offset

2

Where would data from memory byte address 6195 be placed, assuming the
eight-block cache designs below, with 16 bytes per block?
• 6195 in binary is 00...0110000 011 0011.
• Each block has 16 bytes, so the lowest 4 bits are the block offset.
• For the

• 1-way cache, the next three bits (011) are the set index.
• 2-way cache, the next two bits (11) are the set index.
• 4-way cache, the next one bit (1) is the set index.

• The data may go in any block, shown in green, within the correct set.

Cache: Set Associativity

2Cache: Set Associativity

• The 32KB of L1 data cache in a core can therefore be envisioned as a
three-dimensional box, where:

• Depth represents the size of a cache line, e.g., 64 bytes
• Height represents the extent of a cache set
• Width represents the number of sets that are available

• After doing a few quick calculations, we can find the relevant properties
for the L1d cache of a core, which holds 32 KB divided into 64-byte cache
lines and is 8-way set associative:

• Bytes in L1d = 32 KB * 1024 (bytes/KB) = 32768 bytes
• Cache lines in L1d = 32768 / (line size) = 32768 / 64 = 512
• Number of sets = 512 / 8 = 64

2Cache: Set Associativity

- Recall that each square on the
right represents an entire cache
line (64 bytes in our case).
- When data at a particular address
is requested, the congruence class
of the address is computed,
determining the cache set of the
cache line containing the data.
- Then the entire line is fetched
into one of the eight slots for that
cache set. (https://juejin.cn/post/6945477261197852703)

2

What is the worst performance pattern for a cache like this?
Lets see the answer!

Cache: Set Associativity

2

Co-funded by the Horizon 2020 programme
of the European Union

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101101903. The JU receives
support from the Digital Europe Programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland,
Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North
Macedonia, Iceland, Montenegro, Serbia

Thanks

	Varsayılan Bölüm
	Slide 1
	Slide 2: Introduction to Computers
	Slide 3: Processor: Pipelining
	Slide 4: Processor: Branches
	Slide 5: Processor: Branches
	Slide 6: Processor: Branches
	Slide 7: Computer: Memory
	Slide 8: Computer: Memory
	Slide 9: Computer: Memory
	Slide 10: Computer: Memory
	Slide 11: Computer: Memory
	Slide 12: Computer: Memory
	Slide 13: Computer: Memory
	Slide 14: Memory: Caches
	Slide 15: Memory: Caches
	Slide 16: Memory: Caches
	Slide 17: Caches: Temporal locality
	Slide 18: Computer: Memory
	Slide 19: Computer: Memory
	Slide 20: Computer: Memory
	Slide 21: Computer: Memory
	Slide 22: Memory: Caches
	Slide 23: Caches: Spatial Locality
	Slide 24: Caches: Spatial Locality
	Slide 25: Cache: Set Associativity
	Slide 26: Cache: Set Associativity
	Slide 27: Cache: Set Associativity
	Slide 28: Cache: Set Associativity
	Slide 29
	Slide 30: Memory: A summary
	Slide 31: Alternative Approaches for Hiding Memory Latency
	Slide 32: Memory: Prefetching
	Slide 33: Memory: Prefetching
	Slide 34: Memory: Prefetching

	Başlıksız Bölüm
	Slide 35: Thanks

