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2Terminology

▪ Host The CPU and its memory (host memory)
▪ Device The GPU and its memory (device memory)

Host Device



2Hello World! with Device Code

__global__ void gpu_kernel() {…}

int main() {
gpu_kernel<<<1,1>>>();
printf("Hello to the GPU!\n");
return 0;

}

main() runs on the CPU.
gpu_kernel() runs on the GPU.

__global__ indicates a function:
runs on the device that
is called from host code (main)

When compiled with nvcc:
• Host and device codes are 

separated..
• Device functions (e.g., 

gpu_kernel()) processed by 
Nvidia compiler.

• Host functions (e.g. main()) 
processed by standard host 
compiler (e.g., gcc) 
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GPU 
Architecture

- A kernel is executed by a grid (a set of 
blocks ordered in 3d)
- A block (a set of threads organized in 3d) is 
assigned to an SM.
- A warp is a set of threads controlled by a 
single controller.

To fully use the device, we need both blocks 
and threads. 

gpu_kernel<<<grid_dims, block_dims>>>();



2GPU: IDs and Dimensions

• A kernel is launched as a grid of 
blocks of threads

• blockIdx and threadIdx are 3D
• We showed only one dimension (x)

• Built-in variables:
• threadIdx
• blockIdx
• blockDim
• gridDim
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• With M threads/block a unique index for each thread 
is given by:

int index = threadIdx.x + blockIdx.x * M;

• Using blockIdx.x and threadIdx.x

• Consider indexing an array with one element per thread (8 
threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA: Parallelism – Blocks/Threads
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• Which thread will operate on the red element?

int index = threadIdx.x + blockIdx.x * M;
=      5      +     2      * 8;
= 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5
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M = 8

CUDA: Parallelism – Blocks/Threads



2

• Use the built-in variable blockDim.x for threads per block
int index = threadIdx.x + blockIdx.x * blockDim.x;

• Combined version of add() to use parallel threads and
parallel blocks

__global__ void add(int *a, int *b, int *c) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];

}

CUDA: Parallelism – Blocks/Threads
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#define N (2048*2048)
#define THREADS_PER_BLOCK 512

....

....

CUDA: Parallelism – Blocks/Threads

add<<<N/THREADS_PER_BLOCK,,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);
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