
2

Performance Engineering on CPUs and GPUs:
- GPUs: Things to be Careful for Performance -

Kamer Kaya, Sabancı Universityncc@ulakbim.gov.tr

2Terminology

▪ Host The CPU and its memory (host memory)
▪ Device The GPU and its memory (device memory)

Host Device

2Hello World! with Device Code

__global__ void gpu_kernel() {…}

int main() {
gpu_kernel<<<1,1>>>();
printf("Hello to the GPU!\n");
return 0;

}

main() runs on the CPU.
gpu_kernel() runs on the GPU.

__global__ indicates a function:
runs on the device that
is called from host code (main)

When compiled with nvcc:
• Host and device codes are

separated..
• Device functions (e.g.,

gpu_kernel()) processed by
Nvidia compiler.

• Host functions (e.g. main())
processed by standard host
compiler (e.g., gcc)

2
GPU
Architecture

- A kernel is executed by a grid (a set of
blocks ordered in 3d)
- A block (a set of threads organized in 3d) is
assigned to an SM.
- A warp is a set of threads controlled by a
single controller.

To fully use the device, we need both blocks
and threads.

gpu_kernel<<<grid_dims, block_dims>>>();

2GPU: IDs and Dimensions

• A kernel is launched as a grid of
blocks of threads

• blockIdx and threadIdx are 3D
• We showed only one dimension (x)

• Built-in variables:
• threadIdx
• blockIdx
• blockDim
• gridDim

Device
Grid 1

Block
(0,0,0)

Block
(1,0,0)

Block
(2,0,0)

Block
(1,1,0)

Block
(2,1,0)

Block
(0,1,0)

Block (1,1,0)

Thread
(0,0,0)

Thread
(1,0,0)

Thread
(2,0,0)

Thread
(3,0,0)

Thread
(4,0,0)

Thread
(0,1,0)

Thread
(1,1,0)

Thread
(2,1,0)

Thread
(3,1,0)

Thread
(4,1,0)

Thread
(0,2,0)

Thread
(1,2,0)

Thread
(2,2,0)

Thread
(3,2,0)

Thread
(4,2,0)

2

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

• With M threads/block a unique index for each thread
is given by:

int index = threadIdx.x + blockIdx.x * M;

• Using blockIdx.x and threadIdx.x

• Consider indexing an array with one element per thread (8
threads/block)

threadIdx.x threadIdx.x threadIdx.x threadIdx.x

blockIdx.x = 0 blockIdx.x = 1 blockIdx.x = 2 blockIdx.x = 3

CUDA: Parallelism – Blocks/Threads

2

• Which thread will operate on the red element?

int index = threadIdx.x + blockIdx.x * M;
= 5 + 2 * 8;
= 21;

0 1 72 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6

threadIdx.x = 5

blockIdx.x = 2

0 1 312 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

M = 8

CUDA: Parallelism – Blocks/Threads

2

• Use the built-in variable blockDim.x for threads per block
int index = threadIdx.x + blockIdx.x * blockDim.x;

• Combined version of add() to use parallel threads and
parallel blocks

__global__ void add(int *a, int *b, int *c) {
int index = threadIdx.x + blockIdx.x * blockDim.x;
c[index] = a[index] + b[index];

}

CUDA: Parallelism – Blocks/Threads

2

#define N (2048*2048)
#define THREADS_PER_BLOCK 512

....

....

CUDA: Parallelism – Blocks/Threads

add<<<N/THREADS_PER_BLOCK,,THREADS_PER_BLOCK>>>(d_a, d_b, d_c);

2

Co-funded by the Horizon 2020 programme
of the European Union

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101101903. The JU receives
support from the Digital Europe Programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland,
Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Türkiye, Republic of North
Macedonia, Iceland, Montenegro, Serbia

Thanks

	Varsayılan Bölüm
	Slide 1
	Slide 2: Terminology
	Slide 3: Hello World! with Device Code
	Slide 4: GPU Architecture
	Slide 5: GPU: IDs and Dimensions
	Slide 6: CUDA: Parallelism – Blocks/Threads
	Slide 7: CUDA: Parallelism – Blocks/Threads
	Slide 8: CUDA: Parallelism – Blocks/Threads
	Slide 9: CUDA: Parallelism – Blocks/Threads
	Slide 10: Things to be Careful for Performance: (1) Coalesced memory accesses
	Slide 11: Things to be Careful for Performance: (1) Coalesced memory accesses
	Slide 12: Things to be Careful for Performance: (1) Coalesced memory accesses
	Slide 13: Things to be Careful for Performance: (1) Coalesced memory accesses
	Slide 14: Things to be Careful for Performance: (2) Using shared memory
	Slide 15: Things to be Careful for Performance: (2) Using shared memory
	Slide 16: Things to be Careful for Performance: (3) Bank conflicts
	Slide 17: Things to be Careful for Performance: (3) Bank conflicts
	Slide 18: Things to be Careful for Performance: (3) Bank conflicts
	Slide 19: Things to be Careful for Performance: (3) Bank conflicts
	Slide 20: Things to be Careful for Performance: (4) Occupancy
	Slide 21: Things to be Careful for Performance: (4) Occupancy
	Slide 22: Summary: Matrix Multiplication
	Slide 23: Summary: Matrix Multiplication
	Slide 24: Summary: Matrix Multiplication

	Başlıksız Bölüm
	Slide 25: Thanks

