TUBITAK

@ ..Sabanc: . .
Universitesi

Offloading Computation to a GPU with OpenMP

Kamer Kaya, Sabanci University

ncc@ulakbim.gov.tr

CPUs and GPUs

©

EURO’

CPU Threads:

 Heavyweight entities managed by the
operating system.

e Context switching saves and restores thread
states, and this process can be slow and
resource-intensive.

 CPU cores are optimized for minimizing
latency for one or two threads at a time.

Fast Serial Processing

Latency-optimized

A 4

MOMEAMNME §Em66EED
DoneonmeE Doonnomn
ODDODOODDD DECDoEOon
SENEENEE EEEEEEEE
DEER0EEE CEBOEBEEA
EEEEEEER EEEEEEEE
SNENENER SEREEEEE
SENEEEEED SEEEEEEE
SEREEEER EEEEEEER
EEEEEEER SEEEEEEE
ENENEEEE CEREEEEE
EEERENEE FEEEEEEE
SEEEEEER SEEEEEEE
SEEEEEEE SEEEEEEE
O00000CO0 OCoooooa

Manycore GPU

Scalable Parallel Processing

Throughput-optimized
cores

https://tatourian.blog/2013/09/03/nvidia-gpu-architecture-cuda-
programming-environment/

CPUs and GPUs

©

EURO’

GPU Threads:

Lightweight and designed for massive
parallelism.

Hundreds of thousands of threads are
grouped into warps of 32 threads each.
Seamless switching between warps when
one is waiting, without saving or restoring
thread states.

Each thread has dedicated registers and
resources, which remain allocated until
execution completes.

gl

EEEEEEER SEEEEEEE
ENENEEEE CEREEEEE
SEEEENEE FEEEEEEE
SEEEEEER SEEEEEEE
SEEEEEEE SEEEEEEE
O00000CO0 OCoooooa

Manycore GPU

Fast Serial Processing Scalable Parallel Processing

Latency-optimized Throughput-optimized
cores cores

https://tatourian.blog/2013/09/03/nvidia-gpu-architecture-cuda-
programming-environment/

N
N

GPU Architecture: Overview

PC| Express 4.0 Host Interface

|

Memory Controlier

!}

Memory Controller | Memory Controlier

HBM2

!}
|}

Memory Controfler | Memory Controller | Memory Controller

:
o
g
5
<)
£
=
5
g
3
(2]
g
=
=
g
g
~
(2]
g
g
=)
3
=
:
g
~
(2]
£
g
g
=
g
g
~
[x]
2
g
3
g
g
-
o
g
g

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

n

GPU Architécture: Overview

EURO’

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

FP32 FP32

FP32 FP32

FP32 FP32
FP32- FP32.
FP32 FP32'
FP32 FP32
FP32 FP32

FP32 FP32

LD/ LD/
ST ST

FP64

FP64

FP64

FP64

FP64

FP64

FP64

FP64

LD/ LD/
ST ST

TENSOR CORE

LD/ LD/
ST ST SFU

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

INT32 INT32

LD/ LD/
ST ST

Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

FP32 FP32

LD/ LD/
ST ST

FP64

FP64

FP64

FP64

FP64

FP64

FPB4

FP64

LD/ LD/
ST ST

TENSOR CORE

LD/ LD/
ST ST SFU

https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/

Programrﬁing GPUs: Benefits

High Parallelism: GPUs can execute
thousands of threads simultaneously.
High Throughput: Optimized for tasks
involving massive data parallelism.
Applications:

Graphics rendering

Machine learning

Scientific simulations

Exahmp‘li: &mputing Pi @

EURO’

L

Numerical Approximation

To compute this integral numerically:
1. Divide the interval [0, 1] into N small intervals of width Az.

1
Az = —

1
7r=4/ V1—z2dx N
0

2. Approximate the integral using the midpoint rule:

N-—
1rz4-AzZl\/1—(z,~)2

i=0
where:

i = (i +0.5) Az

>

D
Example: Computing Pi with CUDA 2
ik EURO

_global__ void integrate _pi(double *d_results, int num intervals, double step) { .
int idx = blockIdx.x * blockDim.x + threadIdx.x; > Each thread executes this code
double x, local_sum = 0.0; \\\\\\\\\“\\\\\\\\\\\\\\\5
for (int i = idx; i < num_intervals; i += gridDim.x * blockDim.x) { \> ID of the Cl.'lrrent thread (dlfferentlates .
X = (1 + 0.5) * step; the execution from those of other threads

local_sum += sqrt(1.0 - x * x) * step;
}
d_results[idx] = local \ g
_results[idx] = local_sum; 2
wz4-Az§ V11— (i)
=0

-

// Launch the kernel

integrate_pi<<<NUM_BLOCKS, THREADS_PER_BLOCK>>>(d_results, num_intervals, step); *
Kernel launch

> —\
Exahmp‘lejz &mputing Pi with CUDA @

EURO’

e Let’s work on this CUDA code.

EURO’

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under grant agreement No 101101903. TheJU receives
support from the Digital Europe Programme and Germany, Bulgaria, Austria, Croatia, Cyprus, Czech Republic, Denmark, Estonia, Finland, Greece, Hungary, Ireland,

Italy, Lithuania, Latvia, Poland, Portugal, Romania, Slovenia, Spain, Sweden, France, Netherlands, Belgium, Luxembourg, Slovakia, Norway, Ttirkiye, Republic of North
Macedonia, Iceland, Montenegro, Serbia

	Varsayılan Bölüm
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

	Başlıksız Bölüm
	Slide 25: Thanks

