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CPUs and GPUs
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CPU Threads:

 Heavyweight entities managed by the
operating system.

e Context switching saves and restores thread
states, and this process can be slow and
resource-intensive.

 CPU cores are optimized for minimizing
latency for one or two threads at a time.

Fast Serial Processing

Latency-optimized
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Manycore GPU

Scalable Parallel Processing

Throughput-optimized
cores

https://tatourian.blog/2013/09/03/nvidia-gpu-architecture-cuda-
programming-environment/




CPUs and GPUs
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GPU Threads:

Lightweight and designed for massive
parallelism.

Hundreds of thousands of threads are
grouped into warps of 32 threads each.
Seamless switching between warps when
one is waiting, without saving or restoring
thread states.

Each thread has dedicated registers and
resources, which remain allocated until
execution completes.
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Manycore GPU

Fast Serial Processing Scalable Parallel Processing

Latency-optimized Throughput-optimized
cores cores

https://tatourian.blog/2013/09/03/nvidia-gpu-architecture-cuda-
programming-environment/
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GPU Architecture: Overview
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https://developer.nvidia.com/blog/nvidia-ampere-architecture-in-depth/
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GPU Architécture: Overview
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Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)
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Programrﬁing GPUs: Benefits

High Parallelism: GPUs can execute
thousands of threads simultaneously.
High Throughput: Optimized for tasks
involving massive data parallelism.
Applications:

Graphics rendering

Machine learning

Scientific simulations
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Numerical Approximation

To compute this integral numerically:
1. Divide the interval [0, 1] into N small intervals of width Az.

1
Az = —

1
7r=4/ V1—z2dx N
0

2. Approximate the integral using the midpoint rule:

N-—
1rz4-AzZl\/1—(z,~)2

i=0
where:

i = (i +0.5) Az
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Example: Computing Pi with CUDA 2
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_global__ void integrate _pi(double *d_results, int num intervals, double step) { .
int idx = blockIdx.x * blockDim.x + threadIdx.x; > Each thread executes this code
double x, local_sum = 0.0; \\\\\\\\\“\\\\\\\\\\\\\\\5
for (int i = idx; i < num_intervals; i += gridDim.x * blockDim.x) { \> ID of the Cl.'lrrent thread (dlfferentlates .
X = (1 + 0.5) * step; the execution from those of other threads

local_sum += sqrt(1.0 - x * x) * step;
}
d_results[idx] = local \ g
_results[idx] = local_sum; 2
wz4-Az§ V11— (i)
=0

-

// Launch the kernel

integrate_pi<<<NUM_BLOCKS, THREADS_PER_BLOCK>>>(d_results, num_intervals, step); \\\\\\\\\\\*
Kernel launch
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e Let’s work on this CUDA code.
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