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Electronic structure calculations by Gaussian 16
Erol Yildirim
nec@ulakbim.gov.tr Middle East Technical University
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initial structure is important

Avoid Local Minima

Reasonably good
starting structure! g

Local
Minimum

Energy

Bad starting
structure!

Local

Minimum Local
Will most likely . .
fail with an SCF Minimum
convergence failure Local

or possibly optimize .

to an excited state or Minimum N
high energy ]

structure.

https://hprc.tamu.edu/files/training/2020/Summer/Intro_ QM _Lect1.pdf
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electronic and zero-point Energies= -79.140431
electronic and thermal Energies= -79.137210
electronic and thermal Enthalpies= =79.136266
Sum of electronic and thermal Free Energies= -79.163404

Thermochemistry analysis follows the frequency and normal mode data:

Zero-point correction= .023261 (Hartree/Particle)

Thermal correction to Energy= .026094

Thermal correction to Enthalpy= .027038

Thermal correction to Gibbs Free Energy= .052698

Sum of electronic and zero-point Energies=-527.492585 Eo=Eg..+ZPE

Sum of electronic and thermal Energies= -527.489751 E= Egt Eyvitt ErortEyrans
Sum of electronic and thermal Enthalpies=-527.488807 H=E+RT

Sum of electronic and thermal Free Energies=-527.463147 G=H-IS

https://www.researchgate.net/post/How-to-calculate-solvation-energy-using-Gaussian-09



 Selection of Theory Level Determines Accuracy
« HF, MP2, MP3, DFT (B3LYP, BP86, vb.), CCSD (T), vb.

Selection of basis set
 6-31G(d), SDD, LANL2DZ, vb.

Calibration

* Against experiments
» Against high level calculations (CCSD(T), MRCI, vb.)
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Be careful about charge and multiplicity

S=Xmy m, = Y2 spin up, alpha  mg = -2 spin down, beta

Number of Spin
unpaired e’ Multiplicity
0 S=0 1

Singlet
1 S=1/2 2 Doublet
2 S=1 3 Triplet
3 S=3/2 4 Quartet
4 S=2 5 Quintet
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* Using other visualization and analysis softwares: Multiwfn, Gaussum, VMD




Polarization*Functions

" Polarization functions have higher angular momentum

= They allow for anisotropic variations that occur in bonding and help
model the inter-electronic cusp.

QY

= Examples include 6-31G(d) or 6-31G* which include d functions on the
heavy atoms and 6-31G(d,p) or 6-31G** which include d functions on
heavy atoms and p functions on hydrogen atoms.

Dr. Muhammad Ali Hashmi



Diffuse Functions

. Diffuse basis functions are additional functions with small exponents, and are
therefore large

=  They allow for accurate modelling of systems with weakly bound electrons, such as
v' Anions
v'  Excited states

= A set of diffuse functions usually includes a diffuse s orbital and a set of diffuse p
orbitals with the same exponent

= Examples in include 6-31+G which has diffuse functions on the heavy atoms and 6-
31++G which has diffuse functions on hydrogen atoms as well.

Dr. Muhammad Ali Hashmi 8
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NH; 3-21G
atom # atoms AO degeneracy basis fxns  primitives  total basis fxns total primitives
N 1 Is(core) | 1 3 1 3
2s(val) 1 2 2+1=3 2 3
2p(val) 3 2 2+1=3 0 9
H 3 1s(val) 1 2 2+1=3 6 9
total = 15 24
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Baz Set Type Pople Ahlrichs Duning Huzinga

Double C 6-31G Def2-SVP cc-pVDZ

Triple C 6-311G def2-TZVP cc-pVTZ

Quadruple C Def2-QZVP cc-pvVQZ

10
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Bond Distance in HF molecule

Basis set Bond Length (A) Dg (kJ/mol)
6-31G(d) 0.9337 491
6-31G(d, p) 0.9213 523
6-31+G(d) 0.9408 215
6-311G(d) 0.9175 484
6-311+G(d. p) 0.9166 551
Expt. 0.917 566

11



HOMO-LUMO-ESP
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Ilkan EA, Goker S,Sarigul H, Yildirnm E, Udum YA, Toppare
L. The impact of [1,2,5]chalcogenazolo[3,4-f]-
benzo[1,2,3]triazole structure on the optoelectronic
properties of conjugated polymers. J Polym Sci.
2020;58:956—968.
https://doi.org/10.1002/p0l.20190275968
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https://cccbdb.nist.gov/vibscalejustx.asp

https://www.basissetexchange.org/

http://www.theochem.uni-stuttgart.de/pseudopotentials/index.en.html

Correlation Consistent Basis Sets

://tyr0.chem.wsu.edu/~kipeters/basis.html

a.com/multiwfn/



https://cccbdb.nist.gov/vibscalejustx.asp
https://cccbdb.nist.gov/vibscalejustx.asp
https://www.basissetexchange.org/
https://www.basissetexchange.org/
http://www.theochem.uni-stuttgart.de/pseudopotentials/index.en.html
http://www.theochem.uni-stuttgart.de/pseudopotentials/index.en.html
http://www.theochem.uni-stuttgart.de/pseudopotentials/index.en.html
http://www.theochem.uni-stuttgart.de/pseudopotentials/index.en.html
http://tyr0.chem.wsu.edu/~kipeters/basis.html
http://sobereva.com/multiwfn/
http://sobereva.com/multiwfn/

HF - Hartree Fock (uses RHF for singlets and UHF for others)

RHF - restricted Hartree Fock

UHF - unrestricted Hartree Fock

ROHF - spin-restricted open-shell Hartree Fock

CASSCF - complete active space

DFT- Density Functional Theory (Yogunluk Fonksiyoneli Teorisi)

MP2 - Moller-Plesset second order correlation energy correction

MP3 - Moller-Plesset third order correlation energy correction

MP4 - same as MP4SDTQ

MP4DQ - Moller-Plesset fourth order correlation energy correction with double and quadruple substitutions.
MP4SDQ - Moller-Plesset fourth order correlation energy correction with single, double and quadruple
substitutions.

MP4SDTQ - Moller-Plesset fourth order correlation energy correction with single, double, triple and quadruple
substitutions.

Cl - same as

CIS - configuration interaction with single excitations

CID - configuration interaction with double excitations

CISD - configuration interaction with single and double excitations

QCISD - quadratic configuration interaction with single and double excitations

QCISD(T) - quadratic configuration interaction with single and double excitations and triples contribution to the
energy

CC: Couples Cluster

HF<DFT<MP2<CISD<MP4(SDQ)~CCSD<MP4<CCSD(T)
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Hartree-Fock and Post-HF (Post-SCF)

H+F > HF

T Method | ABpggGeealmol)
HF/STO-3G 73.9
HF/6-311++G(3df,3pd) 97.9
MP2/6-311++G(3df,3pd) 144.9
MP3/6-311++G(3df,3pd) 137.9
MP4/6-311++G(3df,3pd) 141.8
QCISD/6-311++G(3df,3pd) 138.8

QCISD(T) /6-311++G(3df,3pd) 140.6

Experimental

141.2




Cost of Calculation 5
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Level of Theory ______ Scaling

HF N3 iterative
Density Functional Theory N3 iterative
MP2 N5 non-iterative
MP3, MP4(SDQ) N® non-iterative
CISD, CCSD, QCISD N¢ iterative
MP4(SDTQ) N7 non-iterative
MPs5 N8 non-iterative
CISDT, CCSDT, QCISDT N8 iterative
MP6 N9 non-iterative
MP7 N1° non-iterative
CISDTQ, CCSDTQ, QCISDTQ N1 iterative

N: number of basis function




Optimized geometries of hexamers of thiophene, selenophene, and tellurophene

. Phys. 44 (2023) 025401
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Significant Enhancement in the Seebeck Coefficient and Thermoelectric Power
Factor of PEDOT:PSS by Surface Energy Filtering

Motivation: Seebeck coefficient (S) of conducting polymers are highly enhanced o

much lower than their inorganic counterparts. In this work, we find e | [~ decreased S E U R O 2
that both the S and the power factor of acid and base treated o) BA-PEDOTPSS
PEDOT:PSS can be enhanced by coating a layer of Rhodamine 101 [l slightly decreased o

zwitterion. ~+|[" enhanced S
Results: Increasing conjugation length not only decreases band s RECHEESES

ults: i jugati y 1
gap and increasing charge carrier density but also enhancing -1 @-@%@ | Rh101 layer
stacking of the chains. Charge carriers are forced to be distributed @ nl %ﬂ
nonhomogeneously along the PEDOT chain by the electric field .
induced by Rh101 at the interface. This creates electrostatic traps Self-organisation of PEDOT chains at the Rh 101 interface
and defects that decrease conjugation length. ,  Pedots  pedots  pedots
Rh101 disrupts 1r-conjugation of the chains by decreasing overlap ) - B
of orbitals between neighboring 1T-bonds and planarity that resulted 1
in the increasing band gap and reduced 11— interactions leads to ?

S B X 435 4.05

lower amount of nanoscale aggregations of PEDOT chains.

Energy (eV)
A

Conclusion: Slight decrease in 0 and enhancement in S lead to ¢ m v\ V\ P
PF as high as 401.2 yW m-' K2 which is ascribed to the surface
energy filtering and interfacial dipole moment induced by ¢

. . ‘ -7
Rhodamine 101 at the surface of PEDOT:PSS films. W
. ] Electrostatic potential surface (ESP) for increasing conjugation length,
TE properties and work function of samples (Ouyang Group, NUS). ) pepOT,, b) PEDOTs, ¢) PEDOT,. Band gap for these structures.

Sample S (uV K1) o (Scm) PF (MW m1K2)
A-PEDOR:PSS 14.0 3057 59.9 b ’ , ?
RA-PEDOR:PSS 345 2294 273.0 ' ” v
BA-PEDOT:PSS 38.0 2089 301.7
RBA-PEDOT:PSS 47.2 1801 401.2 ESP for PEDOTj under the electriclfigld at a) X- and b) Y-direction.
R:rhodamine interface; A acidtreatment, B base treatment

J.Mater. Chem. A, 2020, 8, 13600-13609


https://doi.org/10.1039/2050-7496/2013
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No dipole moment

Field command in G16 )
X direction of 0.005 au

® Y direction of 0.005 au
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