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4SEEPart I : Fundamentals

● PI.a : Why hardware matters in deep learning?
● PI.b :  Performance metrics
● PI.c : Case Study: Edge Devices vs Datacenter vs 

Supercomputers



4SEEHardware matters!

● Hardware is not universal; it is designed for specific types of 
computation.

● Different hardware handles different operations at different speeds.
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● Hardware is not universal; it is designed for specific types of 
computation.

● Different hardware handles different operations at different speeds.

● Some hardware excels at logic/branching, others at matrix math.
● For example:

○ Fixed-point vs floating-point computation: 
each hardware type is optimized differently.



4SEEComputation types?

● 1. Logic Operations
○ AND, OR, XOR, NOT
○ Bitwise operations
○ Comparisons (>, <, ==)
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● 2. Branching / Control Flow
○ Conditional statements (if/else)
○ Loops with unpredictable iteration counts
○ Function calls and returns
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● 3. Memory Operations
○ Read from memory / cache
○ Write to memory / cache
○ Load/store operations
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● 4. Arithmetic Operations
○ Additions / Subtractions
○ Multiplications / Divisions
○ Floating-point vs fixed-point computation
○ Accumulations / reductions (sums, averages)

Logic
Design

Computer 
Architecture

Microprocessors
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● 5. Specialized Vector / Matrix Operations
○ Dot products, matrix multiplications
○ Convolutions
○ Tensor contractions
○ Batch operations
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● 6. Miscellaneous / Specialized
○ Random number generation
○ Transcendental functions (exp, log, sin, cos)
○ Activation functions in neural networks
○ Parallelization
○ Quantization
○ others…



4SEEfor Deep Learning?

● Arithmetic-heavy:
○ Matrix / vector operations: 
■ Core of forward/backward passes (dense linear algebra)

○ Reductions (sum/average): 
■ Computing losses, gradients, normalization layers

○ Multiplication / division / accumulation: 
■ Weight updates, activations
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4SEEfor Deep Learning?

● Memory-heavy:
○ Read/write/transfer: 
■ Loading inputs, activations, weights; storing gradients

○ Memory bandwidth:
■ which often becomes a limiting factor, especially for large 

models!
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4SEEfor Deep Learning?

● Logic / branching:
○ Minimal in standard feed-forward neural nets
○ More significant in models with dynamic architectures, RNNs 

with variable lengths, or conditional execution
■ BP-thru-time in RNNs
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4SEEfor Deep Learning?

● Specialized functions:
○ Activation functions (ReLU, Sigmoid, GELU)
○ Softmax, normalization layers, random sampling (dropout)

Logic
Design

Computer 
Architecture

Microprocessors

Co-processors



4SEEtraining vs inference?

● Training:
○ Arithmetic-bound: 
■ Most time spent in matrix multiplications for 

forward/backward passes
○ Memory-bound: 
■ Storing activations for backpropagation; transferring 

weights across devices in distributed setups
○ Communication-bound: 
■ In multi-GPU/HPC setups, gradient synchronization can be a 

bottleneck
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● Inference:
○ Arithmetic-bound: 
■ Most time spent in matrix multiplications for 

forward/backward passes
○ Memory-bound: 
■ Storing activations for backpropagation; transferring 

weights across devices in distributed setups
○ Communication-bound:
■ In multi-GPU/HPC setups, gradient synchronization can be a 

bottleneck
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training vs inference?

● Inference:
○ Arithmetic-bound for large models, but generally less 

intensive than training
○ Memory-bound if model is too large for cache/VRAM
○ Latency-sensitive: 
■ Especially for edge devices; you may optimize for low-

latency rather than max throughput
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training vs inference?

● Inference:
○ Arithmetic-bound for large models, but generally less 

intensive than training
○ Memory-bound if model is too large for cache/VRAM
○ Latency-sensitive: 
■ Especially for edge devices; you may optimize for low-

latency rather than max throughput

latency? throughput?
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4SEENext: Part I.b Performance Metrics

● PI.a : Why hardware matters in deep learning?
● PI.b :  Performance metrics
● PI.c : Case Study: Edge Devices vs Datacenter vs 

Supercomputers
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