
4SEE

ncc@ulakbim.gov.tr

Optimizing Deep Learning Systems for Hardware
Assoc. Prof. Erdem AKAGÜNDÜZ, METU

4SEEPart II : Hardware & Memory Hierarchy

● PII.a : Existing Solution: CPU, GPU, TPU, FPGA, ASIC basics
● PII.b : Memory hierarchy, bandwidth bottlenecks, movement

costs
● PII.c : Precision

4SEEWhat Are We Optimizing?

● Deep learning frameworks run on powerful hardware, yet performance
varies.

● The bottleneck is often not the math itself, but how data is stored and
moved.

● To optimize deep learning (or any algorithm), we must first understand:
○ Where data lives (memory hierarchy).
○ How fast it moves (bandwidth, latency).
○ How costly movement is compared to computation.

4SEEWhy talk about memory?

● In deep learning, most of the cost is not in raw arithmetic, but in moving
data.
○ Optimizing performance = minimizing expensive memory transfers.

● To understand this, we must study the memory hierarchy and where
bottlenecks occur.

4SEEMemory Hierarchy

● Memory hierarchy is the organization of storage components based on
speed, size, and cost.
○ At the top: small, very fast, expensive (e.g., CPU registers, L1 cache).
○ At the bottom: large, slow, cheap (e.g., DRAM, SSD, HDD).
○ Principle: Data is moved between these levels to balance performance

and capacity.
● Key trade-off: The faster the memory, the less of it we have.

4SEEWho controls this?

● So the framework asks for an operation.
○ The runtime (CUDA, cuDNN, MKL) maps it efficiently to the memory

hierarchy.
○ The hardware executes it with its built-in cache and memory logic.

● Understanding the basic memory architecture of whatever system you’re
programming for is necessary to create high performance applications.

● Most desktop systems consist of large amounts of system memory
connected to a single CPU, which may have 2 or three levels or fully
coherent cache.

4SEEWho controls this?

● The hardware itself (CPU/GPU/TPU) enforces the memory hierarchy
○ whether you have registers, caches, DRAM, etc.

● Compilers and runtime libraries (e.g., CUDA for NVIDIA GPUs, ROCm for AMD, XLA

for TPUs, MKL for CPUs) decide how tensors are placed and moved within that
hierarchy.

● Deep learning frameworks (PyTorch, TensorFlow, JAX) don’t directly
manage caches or registers
○ instead, they call into CUDA/cuDNN, MKL, etc., which in turn optimize

data layout and movement.

4SEEExample: NVIDIA Fermi

● This is a basic diagram of the memory structure in
a modern system using NVIDIA’s Fermi
architecture.

● Each SM (streaming microprocessor) processes a stream of
threads concurrently.

● “Streaming” emphasizes that the SM handles
continuous flows of lightweight threads, keeping
the GPU cores busy while hiding memory latency.

4SEEBandwidth Bottleneck

● When the rate of moving data between memory and compute units is
slower than the compute capability, hardware sits idle.
○ Even if FLOPs are plentiful, performance drops if the data cannot

arrive fast enough.
● Parallelism helps:

○ More threads/cores can hide latency by working on other data while
waiting.

○ GPUs/TPUs exploit massive parallelism to keep arithmetic units busy
despite memory delays.

● Remember: Optimizing DL is not just about arithmetic—it’s about
moving data efficiently to sustain compute.

4SEEMovement Costs?

● Matrix multiplications (training/inference) are compute-bound if data
fits in cache. But is never does!

● When data is too large, they become memory-bound (performance
drops).

● Activations, weights, and gradients are constantly moved between
memory levels.

● The cost of training often scales with communication, not just
computation.

4SEEMovement Costs?

● We are not just optimizing FLOPs → we are optimizing data movement.
● Understanding hierarchy = identifying where frameworks waste

resources.

4SEEMovement Costs?

● We are not just optimizing FLOPs → we are optimizing data movement.
● Understanding hierarchy = identifying where frameworks waste

resources.

4SEERoofline Plot

● X-axis: Arithmetic Intensity (OPS/byte)
○ Represents the number of operations per byte of data transferred.
○ Indicates how computationally intensive an application is relative to

its memory usage.

● Y-axis: Performance (GOPS/s)
○ Denotes the number of billions

of operations per second.
● Reflects the computational

throughput of the application.

4SEERoofline Plot

● X-axis: Arithmetic Intensity (OPS/byte)
○ Represents the number of operations per byte of data transferred.
○ Indicates how computationally intensive an application is relative to

its memory usage.

● Y-axis: Performance (GOPS/s)
○ Denotes the number of billions

of operations per second.
● Reflects the computational

throughput of the application.

4SEENext: Part II.b

● PII.a : Existing Solution: CPU, GPU, TPU, FPGA, ASIC basics
● PII.b : Memory hierarchy, bandwidth bottlenecks, movement

costs
● PII.c : Precision

4SEE

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 101191697. The JU receives support from the Digital Europe Programme and Germany, Türkiye,
Republic of North Macedonia, Montenegro, Serbia, Bosnia and Herzegovina.

Thanks!

	Slide 1
	Slide 2: Part II : Hardware & Memory Hierarchy
	Slide 3: What Are We Optimizing?
	Slide 4: Why talk about memory?
	Slide 5: Memory Hierarchy
	Slide 6: Who controls this?
	Slide 7: Who controls this?
	Slide 8: Example: NVIDIA Fermi
	Slide 9: Bandwidth Bottleneck
	Slide 10: Movement Costs?
	Slide 11: Movement Costs?
	Slide 12: Movement Costs?
	Slide 13: Roofline Plot
	Slide 14: Roofline Plot
	Slide 15: Next: Part II.b
	Slide 16

