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Part Il : Hardware & Memory Hierarchy Nm 4SEE

e Pll.b . Memory hierarchy, bandwidth bottlenecks, movement
costs
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What Are We OptimiZing? TURKIYE

® Deep learning frameworks run on powerful hardware, yet performance

varies.
® The bottleneck is often not the math itself, but how data is stored and

moved.

® To optimize deep learning (or any algorithm), we must first understand:

O Where data lives (memory hierarchy).
O How fast it moves (bandwidth, latency).
O How costly movement is compared to computation.
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Why talk about memory? TURKIYE

® In deep learning, most of the cost is not in raw arithmetic, but in moving

data.
O Optimizing performance = minimizing expensive memory transfers.

® To understand this, we must study the memory hierarchy and where
bottlenecks occur.
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Memory Hierarchy %KYE 4SEE

e Memory hierarchy is the organization of storage components based on
speed, size, and cost.
o At the top: small, very fast, expensive (e.g., CPU registers, L1 cache).
o At the bottom: large, slow, cheap (e.g., DRAM, SSD, HDD).
O Principle: Data is moved between these levels to balance performance
and capacity.
e Key trade-off: The faster the memory, the less of it we have.
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Who controls this? TORKIYE

e So the framework asks for an operation.

O The runtime (CUDA, cuDNN, MKL) maps it efficiently to the memory
hierarchy.

o The hardware executes it with its built-in cache and memory logic.

e Understanding the basic memory architecture of whatever system you’re
programming for is necessary to create high performance applications.

e [Most desktop systems consist of large amounts of system memory
connected to a single CPU, which may have 2 or three levels or fully

coherent cache.
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e The hardware itself (CPU/GPU/TPU) enforces the memory hierarchy
o whether you have registers, caches, DRAM, etc.
e Compilers and runtime libraries

decide how tensors are placed and moved within that
hierarchy.

® Deep learning frameworks (PyTorch, TensorFlow, JAX) don’t directly
manage caches or registers

O instead, they call into CUDA/cuDNN, MKL, etc., which in turn optimize
data layout and movement.
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Example: NVIDIA Fermi m}m . l}Rjo asEE

® This is a basic diagram of the memory structure in
a modern system using NVIDIA’s Fermi
architecture.

e Each SM (streaming microprocessor) PrOCESSES d stream of
threads concurrently.

e “Streaming” emphasizes that the SM handles
continuous flows of lightweight threads, keeping
the GPU cores busy while hiding memory latency.




Bandwidth Bottleneck %m 4SEE

e \When the rate of moving data between memory and compute units is
slower than the compute capability, hardware sits idle.
O Even if FLOPs are plentiful, performance drops if the data cannot
arrive fast enough.
e Parallelism helps:
O More threads/cores can hide latency by working on other data while
waiting.
O GPUs/TPUs exploit massive parallelism to keep arithmetic units busy
despite memory delays.
® Remember: Optimizing DL is not just about arithmetic—it’s about
moving data efficiently to sustain compute.
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Movement Costs? TORKIVE

e Matrix multiplications (training/inference) are compute-bound if data

fits in cache. But is never does!

e \When data is too large, they become memory-bound (performance
drops).

e Activations, weights, and gradients are constantly moved between

memory levels.
® The cost of training often scales with communication, not just

computation.
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e We are not just optimizing FLOPs - we are optimizing data movement.
® Understanding hierarchy = identifying where frameworks waste
resources.
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e We are not just optimizing FLOPs - we are optimizing data movement.
® Understanding hierarchy = identifying where frameworks waste
resources.
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DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks
Geraldo F. Oliveira, Juan Gémez-Luna, Lois Orosa, Saugata Ghose, Nandita Vijaykumar, Ivan Fernandez, Mohammad Sadrosadati, Onur Mutlu

Data movement between the CPU and main memary is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems, Computer systems employ a range of technigues to reduce overheads
tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging technigues such as Mear-Data Processing (NDP), where some computation is moved
close to memory. Our goal Is to methodically identify potential sources of data movement over a broad set of applications and 1o comprehensively compare traditional compute-centric data movement mitigation techniques 1o more
memory-centric technigues, thereby develaping a rigorous understanding of the best techniques to mitigate each source of data movement.

With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main
memaory, We develop the first systematic methodology to classify applications based on the sources contributing to data movemnent bottlenecks, From our large-scale characterization of 77K functions across 345 applications, we select
144 functions to form the first open-source benchmark suite (DAMOVY) for main memory data movermnent studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from
a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a
particular application. We open-source DAMOV and the complete source code for our new characterization methodalogy at this https URL.
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Roofline Plot

e X-axis: Arithmetic Intensity (OPS/byte)
O Represents the number of operations per byte of data transferred.
O Indicates how computationally intensive an application is relative to
Its memory usage.

e Y-axis: Performance (GOPS/s)
O Denotes the number of billions
of operations per second.
e Reflects the computational
throughput of the application.
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e Pll.a : Existing Solution: CPU, GPU, TPU, FPGA, ASIC basics
e Pll.b : Memory hierarchy, bandwidth bottlenecks, movement
costs

® Pll.c : Precision
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