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4SEEPart II : Hardware & Memory Hierarchy

● PII.a : Existing Solution: CPU, GPU, TPU, FPGA, ASIC basics
● PII.b : Memory hierarchy, bandwidth bottlenecks, movement 

costs
● PII.c : Precision



4SEEWhat Are We Optimizing?

● Deep learning frameworks run on powerful hardware, yet performance 
varies.

● The bottleneck is often not the math itself, but how data is stored and 
moved.

● To optimize deep learning (or any algorithm), we must first understand:
○ Where data lives (memory hierarchy).
○ How fast it moves (bandwidth, latency).
○ How costly movement is compared to computation.



4SEEWhy talk about memory?

● In deep learning, most of the cost is not in raw arithmetic, but in moving 
data.
○ Optimizing performance = minimizing expensive memory transfers.

● To understand this, we must study the memory hierarchy and where 
bottlenecks occur.



4SEEMemory Hierarchy

● Memory hierarchy is the organization of storage components based on 
speed, size, and cost.
○ At the top: small, very fast, expensive (e.g., CPU registers, L1 cache).
○ At the bottom: large, slow, cheap (e.g., DRAM, SSD, HDD).
○ Principle: Data is moved between these levels to balance performance 

and capacity.
● Key trade-off: The faster the memory, the less of it we have.



4SEEWho controls this?

● So the framework asks for an operation.
○ The runtime (CUDA, cuDNN, MKL) maps it efficiently to the memory 

hierarchy.
○ The hardware executes it with its built-in cache and memory logic.

● Understanding the basic memory architecture of whatever system you’re 
programming for is necessary to create high performance applications.

● Most desktop systems consist of large amounts of system memory 
connected to a single CPU, which may have 2 or three levels or fully 
coherent cache.



4SEEWho controls this?

● The hardware itself (CPU/GPU/TPU) enforces the memory hierarchy 
○ whether you have registers, caches, DRAM, etc.

● Compilers and runtime libraries (e.g., CUDA for NVIDIA GPUs, ROCm for AMD, XLA 

for TPUs, MKL for CPUs) decide how tensors are placed and moved within that 
hierarchy.

● Deep learning frameworks (PyTorch, TensorFlow, JAX) don’t directly 
manage caches or registers  
○ instead, they call into CUDA/cuDNN, MKL, etc., which in turn optimize 

data layout and movement.



4SEEExample: NVIDIA Fermi

● This is a basic diagram of the memory structure in 
a modern system using NVIDIA’s Fermi 
architecture.

● Each SM (streaming microprocessor) processes a stream of 
threads concurrently.

● “Streaming” emphasizes that the SM handles 
continuous flows of lightweight threads, keeping 
the GPU cores busy while hiding memory latency.



4SEEBandwidth Bottleneck

● When the rate of moving data between memory and compute units is 
slower than the compute capability, hardware sits idle.
○ Even if FLOPs are plentiful, performance drops if the data cannot 

arrive fast enough.
● Parallelism helps:

○ More threads/cores can hide latency by working on other data while 
waiting.

○ GPUs/TPUs exploit massive parallelism to keep arithmetic units busy 
despite memory delays.

● Remember: Optimizing DL is not just about arithmetic—it’s about 
moving data efficiently to sustain compute.



4SEEMovement Costs?

● Matrix multiplications (training/inference) are compute-bound if data 
fits in cache. But is never does!

● When data is too large, they become memory-bound (performance 
drops).

● Activations, weights, and gradients are constantly moved between 
memory levels.

● The cost of training often scales with communication, not just 
computation.



4SEEMovement Costs?

● We are not just optimizing FLOPs → we are optimizing data movement.
● Understanding hierarchy = identifying where frameworks waste 

resources.
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4SEERoofline Plot

● X-axis: Arithmetic Intensity (OPS/byte)
○ Represents the number of operations per byte of data transferred.
○ Indicates how computationally intensive an application is relative to 

its memory usage.

● Y-axis: Performance (GOPS/s)
○ Denotes the number of billions 

of operations per second.
● Reflects the computational 

throughput of the application.
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4SEENext: Part II.b 

● PII.a : Existing Solution: CPU, GPU, TPU, FPGA, ASIC basics
● PII.b : Memory hierarchy, bandwidth bottlenecks, movement 

costs
● PII.c : Precision
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