-

oDTU
" METU

<

“S EURO

\\ 7 TiBinaK

SEE

Optimizing Deep Learning Systems for Hardware
Assoc. Prof. Erdem AKAGUNDUZ, METU

ncc@ulakbim.gov.tr

Part Il : Hardware & Memory Hierarchy Nm 4SEE

e Pll.b . Memory hierarchy, bandwidth bottlenecks, movement
costs

N

What Are We OptimiZing? TURKIYE

® Deep learning frameworks run on powerful hardware, yet performance

varies.
® The bottleneck is often not the math itself, but how data is stored and

moved.

® To optimize deep learning (or any algorithm), we must first understand:

O Where data lives (memory hierarchy).
O How fast it moves (bandwidth, latency).
O How costly movement is compared to computation.

4SEE

N

Why talk about memory? TURKIYE

® In deep learning, most of the cost is not in raw arithmetic, but in moving

data.
O Optimizing performance = minimizing expensive memory transfers.

® To understand this, we must study the memory hierarchy and where
bottlenecks occur.

4SEE

Memory Hierarchy %KYE 4SEE

e Memory hierarchy is the organization of storage components based on
speed, size, and cost.
o At the top: small, very fast, expensive (e.g., CPU registers, L1 cache).
o At the bottom: large, slow, cheap (e.g., DRAM, SSD, HDD).
O Principle: Data is moved between these levels to balance performance
and capacity.
e Key trade-off: The faster the memory, the less of it we have.

N 4SEE

Who controls this? TORKIYE

e So the framework asks for an operation.

O The runtime (CUDA, cuDNN, MKL) maps it efficiently to the memory
hierarchy.

o The hardware executes it with its built-in cache and memory logic.

e Understanding the basic memory architecture of whatever system you’re
programming for is necessary to create high performance applications.

e [Most desktop systems consist of large amounts of system memory
connected to a single CPU, which may have 2 or three levels or fully

coherent cache.

Who controls this? N 4SEE

TURKIYE

e The hardware itself (CPU/GPU/TPU) enforces the memory hierarchy
o whether you have registers, caches, DRAM, etc.
e Compilers and runtime libraries

decide how tensors are placed and moved within that
hierarchy.

® Deep learning frameworks (PyTorch, TensorFlow, JAX) don’t directly
manage caches or registers

O instead, they call into CUDA/cuDNN, MKL, etc., which in turn optimize
data layout and movement.

: <
Example: NVIDIA Fermi m}m . l}Rjo asEE

® This is a basic diagram of the memory structure in
a modern system using NVIDIA’s Fermi
architecture.

e Each SM (streaming microprocessor) PrOCESSES d stream of
threads concurrently.

e “Streaming” emphasizes that the SM handles
continuous flows of lightweight threads, keeping
the GPU cores busy while hiding memory latency.

Bandwidth Bottleneck %m 4SEE

e \When the rate of moving data between memory and compute units is
slower than the compute capability, hardware sits idle.
O Even if FLOPs are plentiful, performance drops if the data cannot
arrive fast enough.
e Parallelism helps:
O More threads/cores can hide latency by working on other data while
waiting.
O GPUs/TPUs exploit massive parallelism to keep arithmetic units busy
despite memory delays.
® Remember: Optimizing DL is not just about arithmetic—it’s about
moving data efficiently to sustain compute.

N 4SEE

Movement Costs? TORKIVE

e Matrix multiplications (training/inference) are compute-bound if data

fits in cache. But is never does!

e \When data is too large, they become memory-bound (performance
drops).

e Activations, weights, and gradients are constantly moved between

memory levels.
® The cost of training often scales with communication, not just

computation.

Movement Costs? %KYE 4SEE

e We are not just optimizing FLOPs - we are optimizing data movement.
® Understanding hierarchy = identifying where frameworks waste
resources.

>
Movement Costs? e EUROSE

e We are not just optimizing FLOPs - we are optimizing data movement.
® Understanding hierarchy = identifying where frameworks waste
resources.

aT (J.V > £5 > arkiv:i2105.03725

Computer Science > Hardware Architecture
[Swbmitted on & May 2021 (vi), last revised & Apr 2023 (this version, vEl

DAMOV: A New Methodology and Benchmark Suite for Evaluating Data Movement Bottlenecks
Geraldo F. Oliveira, Juan Gémez-Luna, Lois Orosa, Saugata Ghose, Nandita Vijaykumar, Ivan Fernandez, Mohammad Sadrosadati, Onur Mutlu

Data movement between the CPU and main memary is a first-order obstacle against improving performance, scalability, and energy efficiency in modern systems, Computer systems employ a range of technigues to reduce overheads
tied to data movement, spanning from traditional mechanisms (e.g., deep multi-level cache hierarchies, aggressive hardware prefetchers) to emerging technigues such as Mear-Data Processing (NDP), where some computation is moved
close to memory. Our goal Is to methodically identify potential sources of data movement over a broad set of applications and 1o comprehensively compare traditional compute-centric data movement mitigation techniques 1o more
memory-centric technigues, thereby develaping a rigorous understanding of the best techniques to mitigate each source of data movement.

With this goal in mind, we perform the first large-scale characterization of a wide variety of applications, across a wide range of application domains, to identify fundamental program properties that lead to data movement to/from main
memaory, We develop the first systematic methodology to classify applications based on the sources contributing to data movemnent bottlenecks, From our large-scale characterization of 77K functions across 345 applications, we select
144 functions to form the first open-source benchmark suite (DAMOVY) for main memory data movermnent studies. We select a diverse range of functions that (1) represent different types of data movement bottlenecks, and (2) come from
a wide range of application domains. Using NDP as a case study, we identify new insights about the different data movement bottlenecks and use these insights to determine the most suitable data movement mitigation mechanism for a
particular application. We open-source DAMOV and the complete source code for our new characterization methodalogy at this https URL.

N | 4SEE

TURKIYE

Roofline Plot

e X-axis: Arithmetic Intensity (OPS/byte)
O Represents the number of operations per byte of data transferred.
O Indicates how computationally intensive an application is relative to
Its memory usage.

e Y-axis: Performance (GOPS/s)
O Denotes the number of billions
of operations per second.
e Reflects the computational
throughput of the application.

@ Faster on CPU © Faster on NDP @ Similar on CPU/NDP © Depends

1000 . 1024 GOPS/s
I
|
10040 §? L;3 ®

1 10 100 1000
Arithmetic Intensity (OPS/byte)

o
¥
%

o

Performance (GOPS/s)

N | 4SEE

TURKIYE

Roofline Plot

e X-axis: Arithmetic Intensity (OPS/byte)
O Represents the number of operations per byte of data transferred.
O Indicates how computationally intensive an application is relative to
Its memory usage.

e Y-axis: Performance (GOPS/s)
O Denotes the number of billions
of operations per second.
e Reflects the computational
throughput of the application.

@ Faster on CPU © Faster on NDP @ Similar on CPU/NDP © Depends

1000 :

SDG-%

100470 g
&

10 100 1000
Arithmetic Intensity (OPS/byte)

1024 GOPS/s

¥
~

--%
o

Performance (GOPS/s)

NC

Ne) Pa‘ |!b w_—— 4SEE
m . | TURKIYE E U RO
e Pll.a : Existing Solution: CPU, GPU, TPU, FPGA, ASIC basics
e Pll.b : Memory hierarchy, bandwidth bottlenecks, movement
costs

® Pll.c : Precision

Thanks!

* ¥ 5
Co-funded by & *
the European Union ** **

* e *

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 101191697. The JU receives support from the Digital Europe Programme and Germany, Turkiye,
Republic of North Macedonia, Montenegro, Serbia, Bosnia and Herzegovina.

4SEE

	Slide 1
	Slide 2: Part II : Hardware & Memory Hierarchy
	Slide 3: What Are We Optimizing?
	Slide 4: Why talk about memory?
	Slide 5: Memory Hierarchy
	Slide 6: Who controls this?
	Slide 7: Who controls this?
	Slide 8: Example: NVIDIA Fermi
	Slide 9: Bandwidth Bottleneck
	Slide 10: Movement Costs?
	Slide 11: Movement Costs?
	Slide 12: Movement Costs?
	Slide 13: Roofline Plot
	Slide 14: Roofline Plot
	Slide 15: Next: Part II.b
	Slide 16

