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4SEEPart III : Model-level Optimization

● PIII.a : Model compression
● PIII.b : Efficient architectures



4SEEOptimizing a DL model on HW

Model-Level System-Level

Scope Neural network structure & 

parameters

Hardware, runtime, 

parallelism strategies

Examples Pruning, quantization, 

distillation…

Pipeline parallelism, compiler 

optimizations

Target Model size, accuracy-

efficiency tradeoff

Latency, throughput, 

hardware utilization

Who applies it? ML researchers & algorithm 

designers

Systems engineers, 

ML infra-teams



4SEEPart III: Model-Level Optimizations

● Definition: Techniques applied directly to the neural network 
architecture or weights to improve efficiency.

● Focus: Reduce computation, memory, and power usage without 
significantly impacting accuracy.

● Why it matters?
○ No system-level change
○ Smaller models = faster inference
○ Better fit for resource-constrained devices (edge, mobile)
○ Lower energy and deployment costs



4SEEPart III.a: Compression

● a) Model Compression
○ Pruning
○ Quantization
○ Knowledge Distillation

● b) Architecture Optimization
○ Case: Efficient CNNs (e.g., MobileNet)



4SEEModel Compression?

● Definition: Techniques that reduce the size and complexity of a deep 
learning model

● Goal: Maintain accuracy while improving:
○ Inference speed
○ Memory footprint
○ Energy efficiency



4SEEWhy Model Compression?

● Real-world drivers:
○ Edge deployment (IoT, smartphones)
○ Faster inference in production systems
○ Lower costs in datacenters (compute + energy)

● Compression ≠ just "shrinking". It's about smart tradeoffs.



4SEEPruning

● Definition: Eliminate weights or entire neurons that contribute little to 
output

● Types:
○ Weight pruning (unstructured)
○ Neuron/channel pruning (structured)
○ Visualization:



4SEEPruning

● Pros:
○ Reduces parameter count and computation
○ Works well post-training ("fine-tune" stage)

● Cons:
○ May require retraining/fine-tuning
○ Unstructured pruning may not lead to real speedups without 

specialized libraries/hardware



4SEEPruning - but how?

● Magnitude-Based Pruning
○ Remove weights with smallest absolute values
○ Simple and effective; often used post-training

● Structured Pruning
○ Remove entire filters, channels, or layers
○ Hardware-friendly → leads to real speedups

● Dynamic / Iterative Pruning
○ Gradually prune during training (e.g., Lottery Ticket Hypothesis)
○ Allows the network to adapt and recover

● Learning-Based Pruning
○ Use optimization or learn mask weights (e.g., L0 regularization)
○ More complex but can yield better performance



4SEEPruning - but how?

Method Pros Cons

Magnitude-Based Simple, fast, widely used May not accelerate inference 

without support

Structured Pruning Leads to real speedups on 

hardware

Can reduce accuracy more if 

not carefully tuned

Iterative/Dynamic Allows model to adapt 

gradually

Requires longer 

training/fine-tuning cycles

Learning-Based Can find better pruning 

masks

Computationally complex 

and harder to tune



4SEEQuantization

● Definition: Replace high-precision floats with lower-bit representations

● Common types:
○ Post-training quantization (PTQ)
○ Quantization-aware training (QAT)

● Popular formats:
○ int8, float16, bfloat16



4SEEPost-Training Quantization

● Definition: Apply quantization to a trained model without retraining
● Workflow:

○ Train model as usual (float32)
○ Convert weights/activations to lower precision (e.g., int8)

✓ Fast and easy to apply
✓ Doesn’t require access to training data (in some versions)𐄂 May suffer accuracy drop, especially for sensitive models 

(e.g., Transformers)𐄂 Limited control over quantization effects



4SEEQuantization-aware Training

● Definition: Simulate quantization effects during training
● Workflow:

○ Insert fake quantization ops during training (e.g., simulate int8 
rounding)

○ Model learns to be robust to quantization noise

✓ Much smaller accuracy drop vs. PTQ
✓ Works well for complex tasks (e.g., NLP, object detection)

╳ Requires access to training pipeline and data
╳ Slower training due to extra ops 
╳ Usually applied to a trained model



4SEEPQT vs QAT



4SEEKnowledge Distilation

● Train a "student" model to mimic a larger, pre-trained "teacher" model



4SEEKnowledge Distilation

● Benefits:
○ Student model is smaller and faster
○ Retains much of teacher's performance

● Use Cases:
○ Deploying large LLMs in mobile settings (e.g., TinyBERT from BERT)
○ Ensembles distilled into single model for efficiencyTrain a "student" 

model to mimic a larger, pre-trained "teacher" model



4SEEModel Compression Trade-offs

Technique Description When to Use

Pruning Remove unnecessary 

weights/connections

Overparameterized models

Quantization Lower precision (e.g., float32 → 

int8)

Speed + memory critical 

environments

Knowledge Distillation Train small model to mimic 

large one

When deploying compact 

models



4SEEModel Compression Trade-offs

Technique Size ↓ Speed ↑ Accuracy Impact

Pruning Medium

Quantization Low–Medium

Knowledge Distill. Low



4SEE

● Yes, if you have a pre-trained teacher

Combined?



4SEENext: Part III.b 

● PIII.a : Model compression
● PIII.b : Efficient architectures
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