
4SEE

ncc@ulakbim.gov.tr

Optimizing Deep Learning Systems for Hardware
Assoc. Prof. Erdem AKAGÜNDÜZ, METU

4SEEPart III : Model-level Optimization

● PIII.a : Model compression
● PIII.b : Efficient architectures

4SEEOptimizing a DL model on HW

Model-Level System-Level

Scope Neural network structure &

parameters

Hardware, runtime,

parallelism strategies

Examples Pruning, quantization,

distillation…

Pipeline parallelism, compiler

optimizations

Target Model size, accuracy-

efficiency tradeoff

Latency, throughput,

hardware utilization

Who applies it? ML researchers & algorithm

designers

Systems engineers,

ML infra-teams

4SEEPart III: Model-Level Optimizations

● Definition: Techniques applied directly to the neural network
architecture or weights to improve efficiency.

● Focus: Reduce computation, memory, and power usage without
significantly impacting accuracy.

● Why it matters?
○ No system-level change
○ Smaller models = faster inference
○ Better fit for resource-constrained devices (edge, mobile)
○ Lower energy and deployment costs

4SEEPart III.a: Compression

● a) Model Compression
○ Pruning
○ Quantization
○ Knowledge Distillation

● b) Architecture Optimization
○ Case: Efficient CNNs (e.g., MobileNet)

4SEEModel Compression?

● Definition: Techniques that reduce the size and complexity of a deep
learning model

● Goal: Maintain accuracy while improving:
○ Inference speed
○ Memory footprint
○ Energy efficiency

4SEEWhy Model Compression?

● Real-world drivers:
○ Edge deployment (IoT, smartphones)
○ Faster inference in production systems
○ Lower costs in datacenters (compute + energy)

● Compression ≠ just "shrinking". It's about smart tradeoffs.

4SEEPruning

● Definition: Eliminate weights or entire neurons that contribute little to
output

● Types:
○ Weight pruning (unstructured)
○ Neuron/channel pruning (structured)
○ Visualization:

4SEEPruning

● Pros:
○ Reduces parameter count and computation
○ Works well post-training ("fine-tune" stage)

● Cons:
○ May require retraining/fine-tuning
○ Unstructured pruning may not lead to real speedups without

specialized libraries/hardware

4SEEPruning - but how?

● Magnitude-Based Pruning
○ Remove weights with smallest absolute values
○ Simple and effective; often used post-training

● Structured Pruning
○ Remove entire filters, channels, or layers
○ Hardware-friendly → leads to real speedups

● Dynamic / Iterative Pruning
○ Gradually prune during training (e.g., Lottery Ticket Hypothesis)
○ Allows the network to adapt and recover

● Learning-Based Pruning
○ Use optimization or learn mask weights (e.g., L0 regularization)
○ More complex but can yield better performance

4SEEPruning - but how?

Method Pros Cons

Magnitude-Based Simple, fast, widely used May not accelerate inference

without support

Structured Pruning Leads to real speedups on

hardware

Can reduce accuracy more if

not carefully tuned

Iterative/Dynamic Allows model to adapt

gradually

Requires longer

training/fine-tuning cycles

Learning-Based Can find better pruning

masks

Computationally complex

and harder to tune

4SEEQuantization

● Definition: Replace high-precision floats with lower-bit representations

● Common types:
○ Post-training quantization (PTQ)
○ Quantization-aware training (QAT)

● Popular formats:
○ int8, float16, bfloat16

4SEEPost-Training Quantization

● Definition: Apply quantization to a trained model without retraining
● Workflow:

○ Train model as usual (float32)
○ Convert weights/activations to lower precision (e.g., int8)

✓ Fast and easy to apply
✓ Doesn’t require access to training data (in some versions)𐄂 May suffer accuracy drop, especially for sensitive models

(e.g., Transformers)𐄂 Limited control over quantization effects

4SEEQuantization-aware Training

● Definition: Simulate quantization effects during training
● Workflow:

○ Insert fake quantization ops during training (e.g., simulate int8
rounding)

○ Model learns to be robust to quantization noise

✓ Much smaller accuracy drop vs. PTQ
✓ Works well for complex tasks (e.g., NLP, object detection)

╳ Requires access to training pipeline and data
╳ Slower training due to extra ops
╳ Usually applied to a trained model

4SEEPQT vs QAT

4SEEKnowledge Distilation

● Train a "student" model to mimic a larger, pre-trained "teacher" model

4SEEKnowledge Distilation

● Benefits:
○ Student model is smaller and faster
○ Retains much of teacher's performance

● Use Cases:
○ Deploying large LLMs in mobile settings (e.g., TinyBERT from BERT)
○ Ensembles distilled into single model for efficiencyTrain a "student"

model to mimic a larger, pre-trained "teacher" model

4SEEModel Compression Trade-offs

Technique Description When to Use

Pruning Remove unnecessary

weights/connections

Overparameterized models

Quantization Lower precision (e.g., float32 →

int8)

Speed + memory critical

environments

Knowledge Distillation Train small model to mimic

large one

When deploying compact

models

4SEEModel Compression Trade-offs

Technique Size ↓ Speed ↑ Accuracy Impact

Pruning Medium

Quantization Low–Medium

Knowledge Distill. Low

4SEE

● Yes, if you have a pre-trained teacher

Combined?

4SEENext: Part III.b

● PIII.a : Model compression
● PIII.b : Efficient architectures

4SEE

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 101191697. The JU receives support from the Digital Europe Programme and Germany, Türkiye,
Republic of North Macedonia, Montenegro, Serbia, Bosnia and Herzegovina.

Thanks!

	Slide 1
	Slide 2: Part III : Model-level Optimization
	Slide 3: Optimizing a DL model on HW
	Slide 4: Part III: Model-Level Optimizations
	Slide 5: Part III.a: Compression
	Slide 6: Model Compression?
	Slide 7: Why Model Compression?
	Slide 8: Pruning
	Slide 9: Pruning
	Slide 10: Pruning - but how?
	Slide 11: Pruning - but how?
	Slide 12: Quantization
	Slide 13: Post-Training Quantization
	Slide 14: Quantization-aware Training
	Slide 15: PQT vs QAT
	Slide 16: Knowledge Distilation
	Slide 17: Knowledge Distilation
	Slide 18: Model Compression Trade-offs
	Slide 19: Model Compression Trade-offs
	Slide 20: Combined?
	Slide 21: Next: Part III.b
	Slide 22

