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4SEEPart IV : System-level Optimization

● PIV.a : Parallelism
● PIV.b : Mixed-Precision Training
● PIV.c : Other



4SEEPart IV.a: Parallelism, Why?

● Large models (e.g., GPT, BERT) don’t fit on a single GPU
● Training takes days or weeks on one machine
● Solution: break up the work across multiple devices.



4SEETypes of Parallelism

● We’ll cover four types of parallelism:
○ Data Parallelism
○ Model Parallelism
○ Pipeline Parallelism
○ Tensor (Sharded) Parallelism



4SEEData Parallelism

● Data Parallelism (Concept)
○ Copy the entire model to multiple devices
○ Each device gets a different batch

of training data
○ Gradients are averaged & synced

across devices
○ no er: 
■ Easy to implement
■ Widely supported

figure: https://insujang.github.io/2022-06-11/parallelism-in-distributed-deep-learning/
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4SEEData Parallelism - Pros & Cons

Pros:
● Simple to implement
● Scales well for many tasks

Cons:
● Doesn’t help if model is too 

big to fit on one GPU
● Communication overhead 

(the gradient sync)

Gradient synchronization 

at each step



4SEEModel Parallelism

● Model Parallelism
○ Split the model across multiple devices
○ Each device holds a different part 

of the model
○ Useful when the model is too 

large for one GPU

figure: https://www.anyscale.com/blog/what-is-distributed-training



4SEEModel Parallelism: Case AlexNet!

● When AlexNet was introduced in 2012, GPUs had much less memory 
than today. The model was too large to fit on a single GPU at the time, 
so the authors split the model across two GPUs.

● In AlexNet, each GPU handled a different 
subset of the convolutional filters 
(and corresponding feature maps).

● This was implemented using grouped 
convolutions, where each group was 
assigned to a different GPU.

figure: https://www.jeremyjordan.me/convnet-architectures/



4SEEModel Parallelism

Pros:
● Enables training very large models

Cons:
● Harder to implement and debug
● Communication between devices

can slow things down

figure: https://www.anyscale.com/blog/what-is-distributed-training



4SEEPipeline Parallelism

● Pipeline Parallelism
○ Break model into “stages” and run mini-batches in a pipeline across 

them
○ Like an assembly line
○ Helps keep all devices busy (how?)

figure: https://afmck.in/posts/2023-02-26-parallelism/



4SEEPipeline Parallelism

● Stage 1 on GPU 1, Stage 2 on GPU 2, etc.
● Micro-batches flow through the pipeline
● Have to make scheduling perfect!

○ i.e. The load at each GPU should take similar amounts of time
figure: https://afmck.in/posts/2023-02-26-parallelism/



4SEEPipeline Parallelism

Pros:
● Higher hardware utilization than basic model parallelism

Cons:
● Requires careful 

scheduling 
(e.g., bubble overhead)

● More complex 
training logic

● Requires a framework!
(like DeepSpeed)

figure: https://afmck.in/posts/2023-02-26-parallelism/



4SEETensor Parallelism

● Tensor (sharded) Parallelism
○ Split large tensors (e.g., weights) across devices at a fine-grained 

level
○ e.g., split matrix multiplication 

across GPUs
○ Common in LLM training frameworks

figure: https://www.anyscale.com/blog/what-is-distributed-training



4SEETensor (Sharded) Parallelism

● Instead of splitting the model by layers (like model parallelism), we split 
the individual tensors (weights, activations) across devices.
○ Imagine a large matrix too big for one GPU.
○ Slice it into smaller chunks.
○ Each GPU holds and computes only its piece.
○ Together, they perform the full operation.

figure: https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html



4SEETensor (Sharded) Parallelism

Large tensors are split across multiple GPUs.
● Let’s say we have a large weight matrix W in a linear (fully connected) 

layer:
○ Y = X x WT

● If W is too big to fit on one GPU, we shard it column-wise:

● GPU 0 holds part A of W
● GPU 1 holds part B …
● GPU 2 holds part C …
● GPU 3 holds part D …

figure: https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html



4SEETensor (Sharded) Parallelism

If you sharded W across GPUs:
● Each GPU computes only its local part of dL/dW (say A, B, C, or D)
● To update weights correctly (e.g., using SGD), you may need to sum or 

sync these parts across all GPUs
● That’s why All-Reduce is used: to combine these partial gradients into a 

full gradient.

figure: https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html



4SEETensor (Sharded) Parallelism

Reduce-Scatter is another communication pattern used in tensor 
parallelism during distributed training.

● It combines two steps:
○ Reduce: Aggregate data (e.g., sum) across GPUs.
○ Scatter: Distribute chunks of the result 

to different GPUs.

figure: https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html



4SEETensor (Sharded) Parallelism

Now each GPU has one reduced piece.
● To get the full result (A+B+C+D), they need to share their pieces.

● In the All-Gather step:
○ GPUs exchange their chunks
○ So that all GPUs end up with every piece

figure: https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html



4SEECommunication Patterns

● When you split a tensor (like weights or activations) across GPUs, each 
GPU does part of the computation. 

● But to get the final result (e.g., output or gradient), the GPUs need to 
communicate and combine their partial results.

● All-Reduce = Compute + Share + Combine
○ Every GPU:
■ Computes its part
■ Shares it with other GPUs
■ Receives others' parts
■ Combines everything into a 

final result (e.g., a full gradient)

figure: https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html



4SEETensor (Sharded) Parallelism

Pros
● Scalability: Excellent (sometimes a must) for huge models
● Lower memory usage per GPU (can do it with cheaper GPUs)

Cons
● You must have many GPUs!
● Complexity: High implementation effort
● Significant communication overhead
● Tooling / Debugging

○ Requires advanced frameworks
which exist

figure: https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html



4SEENext: Part IV.b 

● PIV.a : Parallelism
● PIV.b : Mixed-Precision Training
● PIV.c : Other
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