
4SEE

ncc@ulakbim.gov.tr

Optimizing Deep Learning Systems for Hardware
Assoc. Prof. Erdem AKAGÜNDÜZ, METU

4SEEPart IV : System-level Optimization

● PIV.a : Parallelism
● PIV.b : Mixed-Precision Training
● PIV.c : Other

4SEEPart IV.a: Parallelism, Why?

● Large models (e.g., GPT, BERT) don’t fit on a single GPU
● Training takes days or weeks on one machine
● Solution: break up the work across multiple devices.

4SEETypes of Parallelism

● We’ll cover four types of parallelism:
○ Data Parallelism
○ Model Parallelism
○ Pipeline Parallelism
○ Tensor (Sharded) Parallelism

4SEEData Parallelism

● Data Parallelism (Concept)
○ Copy the entire model to multiple devices
○ Each device gets a different batch

of training data
○ Gradients are averaged & synced

across devices
○ no er:
■ Easy to implement
■ Widely supported

figure: https://insujang.github.io/2022-06-11/parallelism-in-distributed-deep-learning/

4SEEData Parallelism

● Data Parallelism (Concept)
○ Copy the entire model to multiple devices
○ Each device gets a different batch

of training data
○ Gradients are averaged & synced

across devices
○ no er:
■ Easy to implement
■ Widely supported

Gradient synchronization

at each step

4SEEData Parallelism - Pros & Cons

Pros:
● Simple to implement
● Scales well for many tasks

Cons:
● Doesn’t help if model is too

big to fit on one GPU
● Communication overhead

(the gradient sync)

Gradient synchronization

at each step

4SEEModel Parallelism

● Model Parallelism
○ Split the model across multiple devices
○ Each device holds a different part

of the model
○ Useful when the model is too

large for one GPU

figure: https://www.anyscale.com/blog/what-is-distributed-training

4SEEModel Parallelism: Case AlexNet!

● When AlexNet was introduced in 2012, GPUs had much less memory
than today. The model was too large to fit on a single GPU at the time,
so the authors split the model across two GPUs.

● In AlexNet, each GPU handled a different
subset of the convolutional filters
(and corresponding feature maps).

● This was implemented using grouped
convolutions, where each group was
assigned to a different GPU.

figure: https://www.jeremyjordan.me/convnet-architectures/

4SEEModel Parallelism

Pros:
● Enables training very large models

Cons:
● Harder to implement and debug
● Communication between devices

can slow things down

figure: https://www.anyscale.com/blog/what-is-distributed-training

4SEEPipeline Parallelism

● Pipeline Parallelism
○ Break model into “stages” and run mini-batches in a pipeline across

them
○ Like an assembly line
○ Helps keep all devices busy (how?)

figure: https://afmck.in/posts/2023-02-26-parallelism/

4SEEPipeline Parallelism

● Stage 1 on GPU 1, Stage 2 on GPU 2, etc.
● Micro-batches flow through the pipeline
● Have to make scheduling perfect!

○ i.e. The load at each GPU should take similar amounts of time
figure: https://afmck.in/posts/2023-02-26-parallelism/

4SEEPipeline Parallelism

Pros:
● Higher hardware utilization than basic model parallelism

Cons:
● Requires careful

scheduling
(e.g., bubble overhead)

● More complex
training logic

● Requires a framework!
(like DeepSpeed)

figure: https://afmck.in/posts/2023-02-26-parallelism/

4SEETensor Parallelism

● Tensor (sharded) Parallelism
○ Split large tensors (e.g., weights) across devices at a fine-grained

level
○ e.g., split matrix multiplication

across GPUs
○ Common in LLM training frameworks

figure: https://www.anyscale.com/blog/what-is-distributed-training

4SEETensor (Sharded) Parallelism

● Instead of splitting the model by layers (like model parallelism), we split
the individual tensors (weights, activations) across devices.
○ Imagine a large matrix too big for one GPU.
○ Slice it into smaller chunks.
○ Each GPU holds and computes only its piece.
○ Together, they perform the full operation.

figure: https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html

4SEETensor (Sharded) Parallelism

Large tensors are split across multiple GPUs.
● Let’s say we have a large weight matrix W in a linear (fully connected)

layer:
○ Y = X x WT

● If W is too big to fit on one GPU, we shard it column-wise:

● GPU 0 holds part A of W
● GPU 1 holds part B …
● GPU 2 holds part C …
● GPU 3 holds part D …

figure: https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html

4SEETensor (Sharded) Parallelism

If you sharded W across GPUs:
● Each GPU computes only its local part of dL/dW (say A, B, C, or D)
● To update weights correctly (e.g., using SGD), you may need to sum or

sync these parts across all GPUs
● That’s why All-Reduce is used: to combine these partial gradients into a

full gradient.

figure: https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html

4SEETensor (Sharded) Parallelism

Reduce-Scatter is another communication pattern used in tensor
parallelism during distributed training.

● It combines two steps:
○ Reduce: Aggregate data (e.g., sum) across GPUs.
○ Scatter: Distribute chunks of the result

to different GPUs.

figure: https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html

4SEETensor (Sharded) Parallelism

Now each GPU has one reduced piece.
● To get the full result (A+B+C+D), they need to share their pieces.

● In the All-Gather step:
○ GPUs exchange their chunks
○ So that all GPUs end up with every piece

figure: https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html

4SEECommunication Patterns

● When you split a tensor (like weights or activations) across GPUs, each
GPU does part of the computation.

● But to get the final result (e.g., output or gradient), the GPUs need to
communicate and combine their partial results.

● All-Reduce = Compute + Share + Combine
○ Every GPU:
■ Computes its part
■ Shares it with other GPUs
■ Receives others' parts
■ Combines everything into a

final result (e.g., a full gradient)

figure: https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html

4SEETensor (Sharded) Parallelism

Pros
● Scalability: Excellent (sometimes a must) for huge models
● Lower memory usage per GPU (can do it with cheaper GPUs)

Cons
● You must have many GPUs!
● Complexity: High implementation effort
● Significant communication overhead
● Tooling / Debugging

○ Requires advanced frameworks
which exist

figure: https://docs.pytorch.org/tutorials/intermediate/FSDP_tutorial.html

4SEENext: Part IV.b

● PIV.a : Parallelism
● PIV.b : Mixed-Precision Training
● PIV.c : Other

4SEE

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 101191697. The JU receives support from the Digital Europe Programme and Germany, Türkiye,
Republic of North Macedonia, Montenegro, Serbia, Bosnia and Herzegovina.

Thanks!

	Slide 1
	Slide 2: Part IV : System-level Optimization
	Slide 3: Part IV.a: Parallelism, Why?
	Slide 4: Types of Parallelism
	Slide 5: Data Parallelism
	Slide 6: Data Parallelism
	Slide 7: Data Parallelism - Pros & Cons
	Slide 8: Model Parallelism
	Slide 9: Model Parallelism: Case AlexNet!
	Slide 10: Model Parallelism
	Slide 11: Pipeline Parallelism
	Slide 12: Pipeline Parallelism
	Slide 13: Pipeline Parallelism
	Slide 14: Tensor Parallelism
	Slide 15: Tensor (Sharded) Parallelism
	Slide 16: Tensor (Sharded) Parallelism
	Slide 17: Tensor (Sharded) Parallelism
	Slide 18: Tensor (Sharded) Parallelism
	Slide 19: Tensor (Sharded) Parallelism
	Slide 20: Communication Patterns
	Slide 21: Tensor (Sharded) Parallelism
	Slide 22: Next: Part IV.b
	Slide 23

