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4SEEPart IV : System-level Optimization

● PIV.a : Parallelism
● PIV.b : Mixed-Precision Training
● PIV.c : Other



4SEEMixed-Precision Training

● Use lower-precision data types (e.g., FP16 or BF16) for parts of model 
training instead of full 32-bit (FP32) floats.

● Combines:
○ FP16/BF16 for compute-intensive operations
○ FP32 for numerically sensitive operations (e.g., loss scaling, weight 

updates)
● You need Tools/frameworks: 

○ NVIDIA AMP (Automatic Mixed Precision), 
○ PyTorch native amp, 
○ TensorFlow mixed_precision API.
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4SEEIs it system-level really?

● When we quantized models it was model level?
● Yes. This time it is different.

Model-Level System-Level

Changes the network architecture Keeps model architecture the same

Requires ML domain knowledge Requires hardware/runtime knowledge

Quantization Frameworks Mixed-Precision Frameworks



4SEEIs it system-level really?

● Mixed-precision training does not alter the model structure or 
algorithm.

● It's an implementation detail handled by the training framework and 
hardware stack.

Model-Level System-Level

Changes the network architecture Keeps model architecture the same

Requires ML domain knowledge Requires hardware/runtime knowledge

Quantization Frameworks Mixed-Precision Frameworks



4SEEBenefits

● Faster Training Throughput
○ FP16 and BF16 operations are up to 2x–8x faster on modern GPUs 

(e.g., NVIDIA Tensor Cores)

● Lower Memory Footprint
○ Reduced precision cuts memory usage nearly in half
○ Enables larger batch sizes, deeper models

● Better Hardware Utilization
○ Takes advantage of specialized hardware (e.g., Tensor Cores on 

NVIDIA, BF16 on TPUs)



4SEEHow it works:

● Handled by Compiler/runtime stack
○ GPU drivers and libraries
○ Training loop wrappers — not by the model author

Model remains unchanged
System handles casting, scaling, kernel selection
Benefit comes from exploiting hardware and software stack



4SEEHow it works:

● This diagram illustrates how mixed-precision training works for a single 
layer during a training iteration. It shows:
○ Which parts of the computation use FP16 (half precision)
○ Which parts are kept in FP32 (full precision)
○ How data flows between forward pass, backward pass, and weight 

update steps



4SEEComponents

● Master Weights (F32)
○ The main copy of the model’s weights is stored in FP32.
○ These are not used directly for forward/backward passes, but only 

for updates.
○ They are converted to FP16 before being used for computation.



4SEEComponents

● float2half
○ This block converts FP32 master weights to FP16 weights.
○ These FP16 weights are then used in the forward and backward 

passes.



4SEEComponents

● FWD (Forward Pass)
○ Inputs: FP16 weights and FP16 activations
○ Outputs: FP16 activations

● This is where the model computes the layer outputs from inputs.
● All done in FP16 for speed and lower memory usage.



4SEEComponents

● BWD-Actv (Backward Pass – Activation Gradient)
○ Computes gradients of the loss w.r.t. activations.
○ Takes in:
■ FP16 weights
■ FP16 gradients of outputs (activation grad)

○ Outputs:
■ FP16 gradients of inputs



4SEEComponents

● BWD-Weight (Backward Pass – Weight Gradient)
○ Computes gradients w.r.t. weights.
○ Takes in:
■ FP16 activations (from FWD)
■ FP16 activation gradients

○ Outputs:
■ FP16 weight gradients



4SEEComponents

● Weight Update
○ The FP16 weight gradients are converted to FP32 and used to update 

the FP32 master weights.
○ The update is performed in full precision for numerical stability.
○ The updated weights are then reused in the next iteration.



4SEEComponents

● Task: English-to-French translation
○ Model: 3-layer LSTM with attention (3×1024 LSTM)

● Comparison between:
○ Full precision (FP32) training runs (ref1, ref2, ref3)
○ Mixed-precision training with two different loss scaling values



4SEEComponents

● Left: Training perplexity over iterations
○ Mixed-precision (green solid line, loss scale = 1024) shows faster 

convergence than FP32
○ Poorer performance without proper loss scaling (green dashed line, 

scale = 1)
● Right Zoom-In: Final training perplexity

○ Mixed-precision (green solid) matches or slightly outperforms FP32 
runs

○ Proper loss scaling is essential 
for stability and accuracy



4SEENext: Part IV.c 

● PIV.a : Parallelism
● PIV.b : Mixed-Precision Training
● PIV.c : Other
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