
4SEE

ncc@ulakbim.gov.tr

Optimizing Deep Learning Systems for Hardware
Assoc. Prof. Erdem AKAGÜNDÜZ, METU

4SEEPart IV : System-level Optimization

● PIV.a : Parallelism
● PIV.b : Mixed-Precision Training
● PIV.c : Other

4SEEMixed-Precision Training

● Use lower-precision data types (e.g., FP16 or BF16) for parts of model
training instead of full 32-bit (FP32) floats.

● Combines:
○ FP16/BF16 for compute-intensive operations
○ FP32 for numerically sensitive operations (e.g., loss scaling, weight

updates)
● You need Tools/frameworks:

○ NVIDIA AMP (Automatic Mixed Precision),
○ PyTorch native amp,
○ TensorFlow mixed_precision API.

4SEEMixed-Precision Training

● Use lower-precision data types (e.g., FP16 or BF16) for parts of model
training instead of full 32-bit (FP32) floats.

● Combines:
○ FP16/BF16 for compute-intensive operations
○ FP32 for numerically sensitive operations (e.g., loss scaling, weight

updates)
● You need Tools/frameworks:

○ NVIDIA AMP (Automatic Mixed Precision),
○ PyTorch native amp,
○ TensorFlow mixed_precision API.

4SEEIs it system-level really?

● When we quantized models it was model level?
● Yes. This time it is different.

Model-Level System-Level

Changes the network architecture Keeps model architecture the same

Requires ML domain knowledge Requires hardware/runtime knowledge

Quantization Frameworks Mixed-Precision Frameworks

4SEEIs it system-level really?

● Mixed-precision training does not alter the model structure or
algorithm.

● It's an implementation detail handled by the training framework and
hardware stack.

Model-Level System-Level

Changes the network architecture Keeps model architecture the same

Requires ML domain knowledge Requires hardware/runtime knowledge

Quantization Frameworks Mixed-Precision Frameworks

4SEEBenefits

● Faster Training Throughput
○ FP16 and BF16 operations are up to 2x–8x faster on modern GPUs

(e.g., NVIDIA Tensor Cores)

● Lower Memory Footprint
○ Reduced precision cuts memory usage nearly in half
○ Enables larger batch sizes, deeper models

● Better Hardware Utilization
○ Takes advantage of specialized hardware (e.g., Tensor Cores on

NVIDIA, BF16 on TPUs)

4SEEHow it works:

● Handled by Compiler/runtime stack
○ GPU drivers and libraries
○ Training loop wrappers — not by the model author

Model remains unchanged
System handles casting, scaling, kernel selection
Benefit comes from exploiting hardware and software stack

4SEEHow it works:

● This diagram illustrates how mixed-precision training works for a single
layer during a training iteration. It shows:
○ Which parts of the computation use FP16 (half precision)
○ Which parts are kept in FP32 (full precision)
○ How data flows between forward pass, backward pass, and weight

update steps

4SEEComponents

● Master Weights (F32)
○ The main copy of the model’s weights is stored in FP32.
○ These are not used directly for forward/backward passes, but only

for updates.
○ They are converted to FP16 before being used for computation.

4SEEComponents

● float2half
○ This block converts FP32 master weights to FP16 weights.
○ These FP16 weights are then used in the forward and backward

passes.

4SEEComponents

● FWD (Forward Pass)
○ Inputs: FP16 weights and FP16 activations
○ Outputs: FP16 activations

● This is where the model computes the layer outputs from inputs.
● All done in FP16 for speed and lower memory usage.

4SEEComponents

● BWD-Actv (Backward Pass – Activation Gradient)
○ Computes gradients of the loss w.r.t. activations.
○ Takes in:
■ FP16 weights
■ FP16 gradients of outputs (activation grad)

○ Outputs:
■ FP16 gradients of inputs

4SEEComponents

● BWD-Weight (Backward Pass – Weight Gradient)
○ Computes gradients w.r.t. weights.
○ Takes in:
■ FP16 activations (from FWD)
■ FP16 activation gradients

○ Outputs:
■ FP16 weight gradients

4SEEComponents

● Weight Update
○ The FP16 weight gradients are converted to FP32 and used to update

the FP32 master weights.
○ The update is performed in full precision for numerical stability.
○ The updated weights are then reused in the next iteration.

4SEEComponents

● Task: English-to-French translation
○ Model: 3-layer LSTM with attention (3×1024 LSTM)

● Comparison between:
○ Full precision (FP32) training runs (ref1, ref2, ref3)
○ Mixed-precision training with two different loss scaling values

4SEEComponents

● Left: Training perplexity over iterations
○ Mixed-precision (green solid line, loss scale = 1024) shows faster

convergence than FP32
○ Poorer performance without proper loss scaling (green dashed line,

scale = 1)
● Right Zoom-In: Final training perplexity

○ Mixed-precision (green solid) matches or slightly outperforms FP32
runs

○ Proper loss scaling is essential
for stability and accuracy

4SEENext: Part IV.c

● PIV.a : Parallelism
● PIV.b : Mixed-Precision Training
● PIV.c : Other

4SEE

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 101191697. The JU receives support from the Digital Europe Programme and Germany, Türkiye,
Republic of North Macedonia, Montenegro, Serbia, Bosnia and Herzegovina.

Thanks!

	Slide 1
	Slide 2: Part IV : System-level Optimization
	Slide 3: Mixed-Precision Training
	Slide 4: Mixed-Precision Training
	Slide 5: Is it system-level really?
	Slide 6: Is it system-level really?
	Slide 7: Benefits
	Slide 8: How it works:
	Slide 9: How it works:
	Slide 10: Components
	Slide 11: Components
	Slide 12: Components
	Slide 13: Components
	Slide 14: Components
	Slide 15: Components
	Slide 16: Components
	Slide 17: Components
	Slide 18: Next: Part IV.c
	Slide 19

