
4SEE

GPU Assisted Brute Force Cryptanalysis of GPRS, GSM, RFID, and TETRA
Cihangir Tezcan, PhD

Graduate School of Informatics, METU, Ankara
ncc@ulakbim.gov.tr

4SEE
Lesson 7: CUDA Optimization of KASUMI

bit32 threadIndex = blockIdx.x * blockDim.x + threadIdx.x;
bit16 k1 = threadIndex/65536, k2 = threadIndex % 65536;

// Round 1
KL1 = LeftShiftd(k1, 1);
KL2 = k3 ^ 0x89AB;
KO1 = LeftShiftd(k2, 5);
KO2 = LeftShiftd(k6, 8);
KO3 = LeftShiftd(k7, 13);
KI1 = k5 ^ 0xFEDC;
KI2 = k4 ^ 0xCDEF;
KI3 = k8 ^ 0x3210;
temp = FLd(in_left, KL1, KL2);
temp = FOd(temp, KO1, KO2, KO3, KI1, KI2, KI3);
temp ^= in_right;
in_right = in_left;
in_left = temp;

4SEE
Lesson 7: CUDA Optimization of KASUMI

CUDA Optimizations

1. We stored the two S-boxes S7 and S9 of KASUMI in the shared memory.
Removing the bank conflicts did not provide speed-up.

2. The round constants of KASUMI can be kept in the shared memory, or in
registers, or they can be provided as they are inside the code. Best
performance was obtained when they are assigned to registers at the
beginning of the kernel.

3. Our implementation of KASUMI for TMTO table creation and performing
exhaustive key search are different because in an exhaustive search we rarely
perform the encryption of the last round of a Feistel cipher.

4SEE
Lesson 7: CUDA Optimization of KASUMI

CUDA Optimization on Register Count

1. In modern GPUs, best occupancy is obtained when the blocks consist of 1024 threads when there is no other
significant bottleneck.

2. However, this can be achieved when the kernel uses less than or equal to 64 registers per thread because a
block can have at most 64K registers in modern GPUs.

3. When compiled with many different versions of CUDA SDK and choice of compute capabilities between 5.0 and
8.9, our TMTO codes always require less than 64 registers and our exhaustive search codes that conditionally
performs the last round require always more than 64 registers.

4. This prevents us to call the kernel blocks with 1024 threads and when we use 512 threads in blocks,
conditionally performing the last round provides negligible speed up compared to the version where we
perform all of the eight rounds with 1024 threads.

5. Since the increase in the number of required registers were due to the compiler's optimizations, we forced the
CUDA SDK to use at most 64 registers when compiling our codes by using the command -maxrregcount=64

6. This way, we achieved 10% speed up compared to the 8-round encryption of the TMTO table creation codes.

7. When compiling our KASUMI implementations, not limiting the register count to 64 at the compile time would
result in "too many resources requested for launch" error at the run time.

4SEE
Lesson 7: CUDA Optimization of KASUMI

4SEE
Lesson 7: CUDA Optimization of KASUMI

4SEENext lecture

CUDA Optimization of SPECK

4SEE

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 101191697. The JU receives support from the Digital Europe Programme and Germany, Türkiye,
Republic of North Macedonia, Montenegro, Serbia, Bosnia and Herzegovina.

Thanks!

	Slide 1
	Slide 2: Lesson 7: CUDA Optimization of KASUMI
	Slide 3: Lesson 7: CUDA Optimization of KASUMI
	Slide 4: Lesson 7: CUDA Optimization of KASUMI
	Slide 5: Lesson 7: CUDA Optimization of KASUMI
	Slide 6: Lesson 7: CUDA Optimization of KASUMI
	Slide 7: Next lecture
	Slide 8

