N N 4SEE
S EURO

\ GPU Assisted Brute Force Cryptanalysis of GPRS, GSM, RFID, and TETRA
Cihangir Tezcan, PhD

Graduate School of Informatics, METU, Ankara
ncc@ulakbim.gov.tr

Lesson 7: CUDA Optimization of KASUMI

bit32 threadIndex = blockIdx.x * blockDim.x + threadIdx.x;

bitl6 k1 = threadIndex/65536, k2 = threadIndex % 65536;

// Round 1

KL1 = LeftShiftd(k1l, 1);

KL2 = k3 ~ Ox89AB;

KOl = LeftShiftd(k2, 5);

KO2 = LeftShiftd(ké, 8);

KO3 = LeftShiftd(k7, 13);

KI1 = k5 ~ OxFEDC;

KI2 = k4 ~ OxCDEF;

KI3 = k8 ~ 0x3210;

temp = FLd(in_left, KL1, KL2);

temp = FOd(temp, KO1l, K02, KO3, KI1l, KI2,

temp = in_right;
in right = in_left;
in_left = temp;

KI3);

9 16¢ ,; ‘
59
\ eeeeeeeee d

ok | @
—-[FOZH FL2 ~ é& Ko;

— — €
r KL, l‘ KO, Kl; | EIZ Kli»
»[FLaH FO3 ké - _

“ne] Om
S Fo4 [FLa 6‘3 .
::::::::: - .

rks [KOsKls]
S FLs |+ Fos !

—_— - FO Function

f KL, l* KO,,Kly

[KOuKl; l—KLG
16
FO6 FL6 KL,
i:["“-{-—J::_[-_—:‘_'_{_ "Cf.;—l’ ‘.69
KL,
{ FL7H FO7 G}]

i -
L ’ Ry

C

KASUMI

!

[KOLKI, [KL,)
FL Function
{ FOS8 HFLS

Lesson 7: CUDA Optimization of KASUMI N

TURKIYE 4SEE

CUDA Optimizations

1. We stored the two S-boxes §7 and S9 of KASUMI in the shared memory.
Removing the bank conflicts did not provide speed-up.

2. The round constants of KASUMI can be kept in the shared memory, or in
registers, or they can be provided as they are inside the code. Best
performance was obtained when they are assigned to registers at the
beginning of the kernel.

3. Our implementation of KASUMI for TMTO table creation and performing
exhaustive key search are different because in an exhaustive search we rarely
perform the encryption of the last round of a Feistel cipher.

Lesson 7: CUDA Optimization of KASUMI N

TURKIYE 4SEE

CUDA Optimization on Register Count

In modern GPUs, best occupancy is obtained when the blocks consist of 1024 threads when there is no other
significant bottleneck.

However, this can be achieved when the kernel uses less than or equal to 64 registers per thread because a
block can have at most 64K registers in modern GPUs.

When compiled with many different versions of CUDA SDK and choice of compute capabilities between 5.0 and
8.9, our TMTO codes always require less than 64 registers and our exhaustive search codes that conditionally
performs the last round require always more than 64 registers.

This prevents us to call the kernel blocks with 1024 threads and when we use 512 threads in blocks,
conditionallyfperforming the last round provides negligible speed up compared to the version where we
perform all of the eight rounds with 1024 threads.

Since the increase in the number of required registers were due to the compiler's optimizations, we forced the
CUDA SDK to use at most 64 registers when compiling our codes by using the command -maxrregcount=64

This way, we achieved 10% speed up compared to the 8-round encryption of the TMTO table creation codes.

When compiling our KASUMI implementations, not limiting the register count to 64 at the compile time would
result in "too many resources requested for launch" error at the run time.

Lesson 7: CUDA Optimization of KASUMI N @

4SEE

TURKIYE E U R
GPU Cores Clock Rate CC Architecture
GTX 860M 640 1020 MHz 5.0 Maxwell
GTX 970 1664 1253 MHz 5.2 Maxwell
MX 250 384 1582 MHz 6.1 Pascal
RTX 2070 Super 2560 1770 MHz 7.5 Turing
RTX 3090 10496 1700 MHz 8.6 Ampere
RTX 4090 16384 2550 MHz 8.9 Ada Lovelace

RTX 5090 21760 2407 MHz 10.1 Blackwell

Lesson 7: CUDA Optimization of KASUMI

NC

©

TURKIYE E U R o

4SEE

GPU TMTO Table Creation Key Search
MX 250 229->% encryptions/s 2470 keys/s
GTX 860M 229-19 encryptions/s 227:%° keys/s
GTX 970 23141 encryptions/s 231°% keys/s
RTX 2070 Super 23298 encryptions/s 23272 keys/s
RTX 4090 23°-3% encryptions/s 2°°:'? keys/s

NG

Next lecture e EURO

4SEE

CUDA Optimization of SPECK

Thanks!

% * ¥ %
RN Co-funded by * *
* * . * *
N the European Union N .

* o, K

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 101191697. The JU receives support from the Digital Europe Programme and Germany, Turkiye,
Republic of North Macedonia, Montenegro, Serbia, Bosnia and Herzegovina.

4SEE

	Slide 1
	Slide 2: Lesson 7: CUDA Optimization of KASUMI
	Slide 3: Lesson 7: CUDA Optimization of KASUMI
	Slide 4: Lesson 7: CUDA Optimization of KASUMI
	Slide 5: Lesson 7: CUDA Optimization of KASUMI
	Slide 6: Lesson 7: CUDA Optimization of KASUMI
	Slide 7: Next lecture
	Slide 8

