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CUDA Optimization of SPECK (SDK Version)

* We observed that compiling our SPECK optimizations with compute capability 5.2
provides around 2°-% better performance compared to a code compiled for compute
capability 8.9.

* For example, trying 243 keys for SPECK-96-26 using an RTX 4090 takes 80.63 seconds
and 77.80 seconds when compiled for compute capabilities 8.9 and 5.2, respectively.

* Current CUDA SDKs do not support compute capability less than 5.0 but using older
CUDA SDKs allow us to use deprecated compute capabilities.

* Thus, we used CUDA SDK 11.1 and compiled our implementations for compute
capability 3.5.

 However, using compute capability 3.5 did not provide any observable speed up
compared to 5.2.
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Although SPECK-64-22 and SPECK-72-22 have smaller number of rounds compared to SPECK-96-26, we
obtained better speeds for SPECK-96-26.

We observed that this is because the key and the data are stored in 32-bit registers in SPECK-96-26 due to its
block size and on CUDA devices the rotation operation on 32-bit values is faster than 16 or 24-bit values.

Thus, 64 and 72-bit versions might be broken faster in the future if new GPU instructions provide speed-ups for
rotations on values smaller than 32 bits.

Note that using 32-bit unsigned integers for storing 16 or 24-bit values requires additional AND operations after
the rotation with OxFFFF or OxFFFFFF, respectively.

In software implementations, it is a common practice to use a for loop to perform r rounds of encryption inside
the loop. Using the #pragma unroll macro unrolls these loops and in the case of SPECK, this provided marginal
speed-up in our implementations.

Our optimizations use small numbers of registers so that we can call the GPU kernels with 1024 threads as
follows to try 220+trial keys:

* speck64 exhaustive <<< 1024, 1024 >>> (ct_d, pt_d, K_d, trial);
» speck72_exhaustive <<< 1024, 1024 >>> (ct_d, pt_d, K_d, trial);
* speck96_exhaustive <<< 1024, 1024 >>> (ct_d, pt_d, K_d, trial);
* speck128 exhaustive <<< 1024, 1024 >>> (ct_d, pt_d, K_d, trial);
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GPU SPECK-64-22 SPECK-72-22 SPECK-96-26 SPECK-128-32
MX 250 23950 keys/s 23072 keys/s 23143 keys/s 2299 keys/s
GTX 860M 23053 keys/s 23072 keys/s 23130 keys/s 22980 keys/s
GTX 970 23212 keys /s 2328 keys/s 23299 keys/s = 23138 keys/s
RTX 2070 Super 23399 keys/s 23%27 keys/s 2°*% keys/s 23297 keys/s
RTX 4090 23020 keys/s 2347 keys/s 2372 keys/s = 23230 keys/s
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