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CUDA Optimization of SPECK (SDK Version)

• We observed that compiling our SPECK optimizations with compute capability 5.2 
provides around 20.06 better performance compared to a code compiled for compute 
capability 8.9. 

• For example, trying 243 keys for SPECK-96-26 using an RTX 4090 takes 80.63 seconds 
and 77.80 seconds when compiled for compute capabilities 8.9 and 5.2, respectively.

• Current CUDA SDKs do not support compute capability less than 5.0 but using older 
CUDA SDKs allow us to use deprecated compute capabilities.

• Thus, we used CUDA SDK 11.1 and compiled our implementations for compute 
capability 3.5. 

• However, using compute capability 3.5 did not provide any observable speed up 
compared to 5.2.
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CUDA Optimization of SPECK
• Although SPECK-64-22 and SPECK-72-22 have smaller number of rounds compared to SPECK-96-26, we 

obtained better speeds for SPECK-96-26. 

• We observed that this is because the key and the data are stored in 32-bit registers in SPECK-96-26 due to its 
block size and on CUDA devices the rotation operation on 32-bit values is faster than 16 or 24-bit values.

• Thus, 64 and 72-bit versions might be broken faster in the future if new GPU instructions provide speed-ups for 
rotations on values smaller than 32 bits. 

• Note that using 32-bit unsigned integers for storing 16 or 24-bit values requires additional AND operations after 
the rotation with 0xFFFF or 0xFFFFFF, respectively.

• In software implementations, it is a common practice to use a for loop to perform r rounds of encryption inside 
the loop. Using the #pragma unroll macro unrolls these loops and in the case of SPECK, this provided marginal 
speed-up in our implementations.

• Our optimizations use small numbers of registers so that we can call the GPU kernels with 1024 threads as 
follows to try 220+trial keys:
• speck64_exhaustive <<< 1024, 1024 >>> (ct_d, pt_d, K_d, trial);
• speck72_exhaustive <<< 1024, 1024 >>> (ct_d, pt_d, K_d, trial);
• speck96_exhaustive <<< 1024, 1024 >>> (ct_d, pt_d, K_d, trial);
• speck128_exhaustive <<< 1024, 1024 >>> (ct_d, pt_d, K_d, trial);
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CUDA Optimization of TEA3
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