N N 4SEE
S EURO

\ GPU Assisted Brute Force Cryptanalysis of GPRS, GSM, RFID, and TETRA
Cihangir Tezcan, PhD

Graduate School of Informatics, METU, Ankara
ncc@ulakbim.gov.tr



Lesson 8: CUDA Optimization of SPECK N

TURKIYE 4SEE

CUDA Optimization of SPECK (SDK Version)

* We observed that compiling our SPECK optimizations with compute capability 5.2
provides around 2°-% better performance compared to a code compiled for compute
capability 8.9.

* For example, trying 243 keys for SPECK-96-26 using an RTX 4090 takes 80.63 seconds
and 77.80 seconds when compiled for compute capabilities 8.9 and 5.2, respectively.

* Current CUDA SDKs do not support compute capability less than 5.0 but using older
CUDA SDKs allow us to use deprecated compute capabilities.

* Thus, we used CUDA SDK 11.1 and compiled our implementations for compute
capability 3.5.

 However, using compute capability 3.5 did not provide any observable speed up
compared to 5.2.



Lesson 8: CUDA Optimization of SPECK N

TURKIYE 4SEE

CUDA Optimization of SPECK

Although SPECK-64-22 and SPECK-72-22 have smaller number of rounds compared to SPECK-96-26, we
obtained better speeds for SPECK-96-26.

We observed that this is because the key and the data are stored in 32-bit registers in SPECK-96-26 due to its
block size and on CUDA devices the rotation operation on 32-bit values is faster than 16 or 24-bit values.

Thus, 64 and 72-bit versions might be broken faster in the future if new GPU instructions provide speed-ups for
rotations on values smaller than 32 bits.

Note that using 32-bit unsigned integers for storing 16 or 24-bit values requires additional AND operations after
the rotation with OxFFFF or OxFFFFFF, respectively.

In software implementations, it is a common practice to use a for loop to perform r rounds of encryption inside
the loop. Using the #pragma unroll macro unrolls these loops and in the case of SPECK, this provided marginal
speed-up in our implementations.

Our optimizations use small numbers of registers so that we can call the GPU kernels with 1024 threads as
follows to try 220+trial keys:

* speck64 exhaustive <<< 1024, 1024 >>> (ct_d, pt_d, K_d, trial);
» speck72_exhaustive <<< 1024, 1024 >>> (ct_d, pt_d, K_d, trial);
* speck96_exhaustive <<< 1024, 1024 >>> (ct_d, pt_d, K_d, trial);
* speck128 exhaustive <<< 1024, 1024 >>> (ct_d, pt_d, K_d, trial);



Lesson 8: CUDA Optimization of SPECK

NC

TURKIYE

©

EURO

4SEE

GPU SPECK-64-22 SPECK-72-22 SPECK-96-26 SPECK-128-32
MX 250 23950 keys/s 23072 keys/s 23143 keys/s 2299 keys/s
GTX 860M 23053 keys/s 23072 keys/s 23130 keys/s 22980 keys/s
GTX 970 23212 keys /s 2328 keys/s 23299 keys/s = 23138 keys/s
RTX 2070 Super 23399 keys/s 23%27 keys/s 2°*% keys/s 23297 keys/s
RTX 4090 23020 keys/s 2347 keys/s 2372 keys/s = 23230 keys/s




NG

Next lecture e EURO

4SEE

CUDA Optimization of TEA3




Thanks!

% * ¥ %
RN Co-funded by * *
* * . * *
N the European Union N .

* o, K

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 101191697. The JU receives support from the Digital Europe Programme and Germany, Turkiye,
Republic of North Macedonia, Montenegro, Serbia, Bosnia and Herzegovina.

4SEE



	Slide 1
	Slide 2: Lesson 8: CUDA Optimization of SPECK
	Slide 3: Lesson 8: CUDA Optimization of SPECK
	Slide 4: Lesson 8: CUDA Optimization of SPECK
	Slide 5: Next lecture
	Slide 6

