N N 4SEE
S EURO

\ GPU Assisted Brute Force Cryptanalysis of GPRS, GSM, RFID, and TETRA
Cihangir Tezcan, PhD

Graduate School of Informatics, METU, Ankara
ncc@ulakbim.gov.tr

Lesson 9: CUDA Optimization of TEA3 N

TURKIYE 4SEE

CUDA Optimization of TEA3

* TEA3 is a keystream generator and it is not suitable for a table-based
implementation due to its design.

* TEA3 can be seen as two parts in which one part applies the S-box on the key
register and the other part applies F31, F32, and R3 functions, which consist of
bit-level operations, on the state register.

* Initially we optimized TEA3 for GPUs using the straightforward implementation.

 However, this approach did not provide good results due to the bit level
operations at the state registers.

* Our best optimization reached 227-32 key trials per second on an RTX 4090 GPU.

Lesson 9: CUDA Optimization of TEA3 N

TURKIYE 4SEE

CUDA Optimization of TEA3

 TEA3 is also not suitable for a bitsliced implementation due to the 8-bit S-box operation on the key register.

* Thus, we combined the straightforward and bitsliced implementation techniques where we implemented the
key register update part as a straightforward implementation and the state register update part as a bitsliced
implementation.

* For the bitsliced part, we tried using 8-bit, 16-bit, and 32-bit registers.

 In other words, we obtained single instruction multiple data (SIMD)-level parallelism at variable-level by trying
8, 16, and 32 keys in a single encryption, respectively.

* Note that although increasing the word size of registers increases the number of parallel encryptions, it also
increases the number of registers used in each thread.

e Although our straightforward implementation requires less than 65 registers, using 8, 16, and 32-bit values in
the bitsliced part increases the required number of registers to 127, 166, and 171, respectively.

* Note that these numbers change depending on the compiled compute capability and used SDK so we compiled
our code using many SDKs and compute capabilities but none of them reduced these numbers to 64 or to 128
in the case of 16 and 32-bit word sizes.

* Thus, our kernel blocks have to decrease to 512 threads when the word size is 8 bits and to 256 threads when
the word size is 16 or 32 bits.

Lesson 9: CUDA Optimization of TEA3 N

TURKIYE 4SEE

CUDA Optimization of TEA3

* In each thread, we use 32 different key registers and store the S-box output results at uint32_t bSboxOut[32].
* Since the S-box has a size of 8 bits, the result can be seen as a 32x8 matrix.

* We need the transpose of this bit matrix to move from our straightforward implementation to bitslice
implementation.

* Note that limiting the maximum used register count to 64 (or to 128) as we did in our KASUMI implementation
causes a performance loss in this case because the kernel really needs to keep more than 64 (or 128) registers.

* For instance, bitslicing the 80-bit state register already requires 80 registers per thread, exceeding the 64 limit.
If we force CUDA SDK to use only 64 registers by using the command -maxrregcount=64 as we did when
implementing KASUMI, the required extra registers spill and are kept in the global memory.

* Reading and writing these values to and from the global memory or cache provides delays that significantly
slow down our implementation.

* Although decreasing the thread count in a block to 512 or 256 decreases the GPU occupancy and therefore the
performance, the number of parallel executions in the bitsliced implementation still provide better results.

* We obtained the best results when we used 32-bit registers and achieved 23471 key trials per second on an RTX
4090. This is around 160 times faster than our straightforward implementation.

Lesson 9: CUDA Optimization of TEA3

CUDA Optimization of TEA3

GPU Key Search
MX 250 228-9 keys/s
GTX 860M 229-23 keys/s
GTX 970 230-33 keys /s
RTX 2070 Super 232°% keys/s
RTX 4090 23411 keys /s

N,

TURKIYE

4SEE

Next lecture N 4SEE

TURKIYE

Summary of GPU Performance of Ciphers

Thanks!

% * ¥ %
RN Co-funded by * *
* * . * *
N the European Union N .

* o, K

This project has received funding from the European High-Performance Computing Joint Undertaking (JU) under
grant agreement No 101191697. The JU receives support from the Digital Europe Programme and Germany, Turkiye,
Republic of North Macedonia, Montenegro, Serbia, Bosnia and Herzegovina.

4SEE

	Slide 1
	Slide 2: Lesson 9: CUDA Optimization of TEA3
	Slide 3: Lesson 9: CUDA Optimization of TEA3
	Slide 4: Lesson 9: CUDA Optimization of TEA3
	Slide 5: Lesson 9: CUDA Optimization of TEA3
	Slide 6: Next lecture
	Slide 7

